AP5
Get AP5 essential facts below. View Videos or join the AP5 discussion. Add AP5 to your Like2do.com topic list for future reference or share this resource on social media.
AP5
AP5
2-Amino-5-phosphonovaleriansäure.svg
Names
IUPAC name
2-amino-5-phosphonopentanoic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.150.904
Properties
C5H12NO5P
Molar mass 197.13 g/mol
Appearance white solid
Density 1.529 g/mL
Boiling point 482.1 °C (899.8 °F; 755.2 K)
Ammonium hydroxide, 50 mg/mL
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
No verify (what is YesYNo ?)
Infobox references

AP5 or APV ((2R)-amino-5-phosphonovaleric acid; (2R)-amino-5-phosphonopentanoate) is a selective NMDA receptor antagonist that competitively inhibits the ligand (glutamate) binding site of NMDA receptors.[1] AP5 blocks NMDA receptors in micromolar concentrations (~50 µM).

AP5 blocks the cellular analog of classical conditioning in the sea slug Aplysia californica, and has similar effects on Aplysia long-term potentiation (LTP), since NMDA receptors are required for both. It is sometimes used in conjunction with the calcium chelator BAPTA to determine whether NMDARs are required for a particular cellular process. AP5/APV has also been used to study NMDAR-dependent LTP in the mammalian hippocampus.[2]

In general, AP5 is very fast-acting within in vitro preparations, and can block NMDA receptor action at a reasonably small concentration. The active isomer of AP5 is considered to be the D configuration, although many preparations are available as a racemic mixture of D- and L-isomers. It is useful to isolate the action of other glutamate receptors in the brain, i.e., AMPA and kainate receptors.

AP5 can block the conversion of a silent synapse to an active one, since this conversion is NMDA receptor-dependent.

AP5 was developed by Jeff Watkins and Harry Olverman.

See also

References

  1. ^ Morris RG. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. Journal of Neuroscience. 1989 Sep;9(9):3040-57. PMID 2552039
  2. ^ Gustafsson B., Wigström H., Abraham W.C., and Huang Y.Y. Long-Term Potentiation in the Hippocampus Using Depolarizing Current Pulses as the Conditioning Stimulus to Single Volley Synaptic Potentials. Journal of Neuroscience. 1987 March;7(3):774-780

Works cited

^ Laube, B; Hirai H, Sturgess M, Betz H, and Kuhse J (1997). "Molecular determinants of antagonists discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit". Neuron 18 (3): 493-503. doi:10.1016/S0896-6273(00)81249-0. PMID 9115742.


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

AP5
 



 

Top US Cities

Like2do.com was developed using defaultLogic.com's knowledge management platform. It allows users to manage learning and research. Visit defaultLogic's other partner sites below:
PopFlock.com : Music Genres | Musicians | Musical Instruments | Music Industry
NCR Works : Retail Banking | Restaurant Industry | Retail Industry | Hospitality Industry