The barycenter (or barycentre; from the Ancient Greek heavy + ? centre^{[1]}) is the center of mass of two or more bodies that are orbiting each other, which is the point around which they both orbit. It is an important concept in fields such as astronomy and astrophysics. The distance from a body's center of mass to the barycenter can be calculated as a simple twobody problem.
In cases where one of the two objects is considerably more massive than the other (and relatively close), the barycenter will typically be located within the more massive object. Rather than appearing to orbit a common center of mass with the smaller body, the larger will simply be seen to wobble slightly. This is the case for the EarthMoon system, where the barycenter is located on average 4,671 km (2,902 mi) from the Earth's center, well within the planet's radius of 6,378 km (3,963 mi). When the two bodies are of similar masses, the barycenter will generally be located between them and both bodies will follow an orbit around it. This is the case for Pluto and Charon, as well as for many binary asteroids and binary stars. When the less massive object is far away, the barycenter can be located outside the more massive object. This is the case for Jupiter and the Sun. Despite the thousandfold difference in mass, due to the relatively large distance between them, the barycenter is outside the Sun.^{[2]}
In astronomy, barycentric coordinates are nonrotating coordinates with the origin at the center of mass of two or more bodies. The International Celestial Reference System is a barycentric one, based on the barycenter of the Solar System.
In geometry, the term "barycenter" is synonymous with centroid, the geometric center of a twodimensional shape.
The barycenter is one of the foci of the elliptical orbit of each body. This is an important concept in the fields of astronomy and astrophysics. If a is the distance between the centers of the two bodies (the semimajor axis of the system), r_{1} is the semimajor axis of the primary's orbit around the barycenter, and is the semimajor axis of the secondary's orbit. When the barycenter is located within the more massive body, that body will appear to "wobble" rather than to follow a discernible orbit. In a simple twobody case, r_{1}, the distance from the center of the primary to the barycenter is given by:
where :
The following table sets out some examples from the Solar System. Figures are given rounded to three significant figures. The term primarysecondary is used to distinguish between involved participants; with the larger called "the primary", and the smaller called "the secondary".
Primary  m_{1} (M_{?}) 
Secondary  m_{2} (M_{?}) 
a (km) 
r_{1} (km) 
R_{1} (km) 


Earth  1  Moon  0.0123  384,000  4,670  6,380  0.732^{[A]} 
Pluto  0.0021  Charon 
0.000254
(0.121 M_{?}) 
19,600  2,110  1,150  1.83^{[B]} 
Sun  333,000  Earth  1 
150,000,000
(1 AU) 
449  696,000  0.000646^{[C]} 
Sun  333,000  Jupiter 
318
(0.000955 M_{?}) 
778,000,000
(5.20 AU) 
742,000  696,000  1.07^{[D]} 
If  which is true for the Sun and any planet  then the ratio approximates to:
Hence, the barycenter of the Sunplanet system will lie outside the Sun only if:
That is, where the planet is massive and far from the Sun.
If Jupiter had Mercury's orbit (57,900,000 km, 0.387 AU), the SunJupiter barycenter would be approximately 55,000 km from the center of the Sun . But even if the Earth had Eris' orbit (1.02×10^{10} km, 68 AU), the SunEarth barycenter would still be within the Sun (just over 30,000 km from the center).
To calculate the actual motion of the Sun, you would need to sum all the influences from all the planets, comets, asteroids, etc. of the Solar System (see nbody problem). If all the planets were aligned on the same side of the Sun, the combined center of mass would lie about 500,000 km above the Sun's surface.
The calculations above are based on the mean distance between the bodies and yield the mean value r_{1}. But all celestial orbits are elliptical, and the distance between the bodies varies between the apses, depending on the eccentricity, e. Hence, the position of the barycenter varies too, and it is possible in some systems for the barycenter to be sometimes inside and sometimes outside the more massive body. This occurs where:
Note that the SunJupiter system, with e_{Jupiter} = 0.0484, just fails to qualify: .
Images are representative (made by hand), not simulated.
In classical mechanics, this definition simplifies calculations and introduces no known problems. In general relativity, problems arise because, while it is possible, within reasonable approximations, to define the barycenter, the associated coordinate system does not fully reflect the inequality of clock rates at different locations. Brumberg explains how to set up barycentric coordinates in general relativity.^{[5]}
The coordinate systems involve a worldtime, i.e. a global time coordinate that could be set up by telemetry. Individual clocks of similar construction will not agree with this standard, because they are subject to differing gravitational potentials or move at various velocities, so the worldtime must be slaved to some ideal clock that is assumed to be very far from the whole selfgravitating system. This time standard is called Barycentric Coordinate Time, or TCB.
Barycentric osculating orbital elements for some objects in the Solar System:^{[6]}
Object  Semimajor axis (in AU) 
Apoapsis (in AU) 
Orbital period (in years) 

C/2006 P1 (McNaught)  2,050  4,100  92,600 
C/1996 B2 (Hyakutake)  1,700  3,410  70,000 
C/2006 M4 (SWAN)  1,300  2,600  47,000 
799  1,570  22,600  
549  1,078  12,800  
90377 Sedna  506  937  11,400 
501  967  11,200 
For objects at such high eccentricity, the Sun's barycentric coordinates are more stable than heliocentric coordinates.^{[7]}