Bessel Functions

Get Bessel Functions essential facts below. View Videos or join the Bessel Functions discussion. Add Bessel Functions to your Like2do.com topic list for future reference or share this resource on social media.
## Applications of Bessel functions

## Definitions

### Bessel functions of the first kind: *J*_{?}

#### Bessel's integrals

#### Relation to hypergeometric series

#### Relation to Laguerre polynomials

### Bessel functions of the second kind: *Y*_{?}

### Hankel functions: *H*^{(1)}

_{?}, *H*^{(2)}

_{?}

### Modified Bessel functions: *I*_{?}, *K*_{?}

### Spherical Bessel functions: *j*_{n}, *y*_{n}

#### Generating function

#### Differential relations

### Spherical Hankel functions: *h*^{(1)}

_{n}, *h*^{(2)}

_{n}

### Riccati-Bessel functions: *S*_{n}, *C*_{n}, *?*_{n}, *?*_{n}

## Asymptotic forms

## Properties

### Recurrence relations

## Multiplication theorem

## Zeros of the Bessel function

### Bourget's hypothesis

### Numerical approaches

## See also

## Notes

## References

## External links

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Bessel Functions

**Bessel functions**, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are the canonical solutions *y*(*x*) of Bessel's differential equation

for an arbitrary complex number ?, the *order* of the Bessel function. Although ? and -*?* produce the same differential equation for real ?, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of ?.

The most important cases are when ? is an integer or half-integer.
Bessel functions for integer ? are also known as **cylinder functions** or the **cylindrical harmonics** because they appear in the solution to Laplace's equation in cylindrical coordinates. **Spherical Bessel functions** with half-integer ? are obtained when the Helmholtz equation is solved in spherical coordinates.

Bessel's equation arises when finding separable solutions to Laplace's equation and the Helmholtz equation in cylindrical or spherical coordinates. Bessel functions are therefore especially important for many problems of wave propagation and static potentials. In solving problems in cylindrical coordinate systems, one obtains Bessel functions of integer order (*?* = *n*); in spherical problems, one obtains half-integer orders (*?* = *n* + ). For example:

- Electromagnetic waves in a cylindrical waveguide
- Pressure amplitudes of inviscid rotational flows
- Heat conduction in a cylindrical object
- Modes of vibration of a thin circular (or annular) acoustic membrane (such as a drum or other membranophone)
- Diffusion problems on a lattice
- Solutions to the radial Schrödinger equation (in spherical and cylindrical coordinates) for a free particle
- Solving for patterns of acoustical radiation
- Frequency-dependent friction in circular pipelines
- Dynamics of floating bodies
- Angular resolution

Bessel functions also appear in other problems, such as signal processing (e.g., see FM synthesis, Kaiser window, or Bessel filter).

Because this is a second-order differential equation, there must be two linearly independent solutions. Depending upon the circumstances, however, various formulations of these solutions are convenient. Different variations are summarized in the table below and described in the following sections.

Type First kind Second kind Bessel functions J _{?}Y _{?}Modified Bessel functions I _{?}K _{?}Hankel functions *H*^{(1)}_{?}=*J*+_{?}*iY*_{?}*H*^{(2)}_{?}=*J*-_{?}*iY*_{?}Spherical Bessel functions j _{n}y _{n}Spherical Hankel functions *h*^{(1)}_{n}=*j*+_{n}*iy*_{n}*h*^{(2)}_{n}=*j*-_{n}*iy*_{n}

Bessel functions of the second kind and the spherical Bessel functions of the second kind are sometimes denoted by N_{n} and n_{n} respectively, rather than Y_{n} and y_{n}.^{[1]}^{[2]}

Bessel functions of the first kind, denoted as *J _{?}*(

where *?*(*z*) is the gamma function, a shifted generalization of the factorial function to non-integer values. The Bessel function of the first kind is an entire function if ? is an integer, otherwise it is a multivalued function with singularity at zero. The graphs of Bessel functions look roughly like oscillating sine or cosine functions that decay proportionally to (see also their asymptotic forms below), although their roots are not generally periodic, except asymptotically for large x. (The series indicates that -*J*_{1}(*x*) is the derivative of *J*_{0}(*x*), much like -sin *x* is the derivative of cos *x*; more generally, the derivative of *J _{n}*(

For non-integer ?, the functions *J _{?}*(

This means that the two solutions are no longer linearly independent. In this case, the second linearly independent solution is then found to be the Bessel function of the second kind, as discussed below.

Another definition of the Bessel function, for integer values of n, is possible using an integral representation:^{[5]}

Another integral representation is:^{[5]}

This was the approach that Bessel used, and from this definition he derived several properties of the function. The definition may be extended to non-integer orders by one of Schläfli's integrals, for Re(*x*) > 0:^{[5]}^{[6]}^{[7]}^{[8]}^{[9]}

The Bessel functions can be expressed in terms of the generalized hypergeometric series as^{[10]}

This expression is related to the development of Bessel functions in terms of the Bessel-Clifford function.

In terms of the Laguerre polynomials L_{k} and arbitrarily chosen parameter t, the Bessel function can be expressed as^{[11]}

The Bessel functions of the second kind, denoted by *Y _{?}*(

For non-integer ?, *Y _{?}*(

In the case of integer order n, the function is defined by taking the limit as a non-integer ? tends to n:

If n is a nonnegative integer, we have the series^{[13]}

where is the digamma function, the logarithmic derivative of the gamma function.^{[14]}

There is also a corresponding integral formula (for Re(*x*) > 0):^{[15]}

*Y _{?}*(

When ? is an integer, moreover, as was similarly the case for the functions of the first kind, the following relationship is valid:

Both *J _{?}*(

The Bessel functions of the second kind when ? is an integer is an example of the second kind of solution in Fuchs's theorem.

Another important formulation of the two linearly independent solutions to Bessel's equation are the **Hankel functions of the first and second kind**, *H*^{(1)}_{?}(*x*) and *H*^{(2)}_{?}(*x*), defined as^{[16]}

where i is the imaginary unit. These linear combinations are also known as **Bessel functions of the third kind**; they are two linearly independent solutions of Bessel's differential equation. They are named after Hermann Hankel.

The importance of Hankel functions of the first and second kind lies more in theoretical development rather than in application. These forms of linear combination satisfy numerous simple-looking properties, like asymptotic formulae or integral representations. Here, "simple" means an appearance of the factor of the form *e*^{i f(x)}. The Bessel function of the second kind then can be thought to naturally appear as the imaginary part of the Hankel functions.

The Hankel functions are used to express outward- and inward-propagating cylindrical-wave solutions of the cylindrical wave equation, respectively (or vice versa, depending on the sign convention for the frequency).

Using the previous relationships, they can be expressed as

If ? is an integer, the limit has to be calculated. The following relationships are valid, whether ? is an integer or not:^{[17]}

In particular, if *?* = *m* + with m a nonnegative integer, the above relations imply directly that

These are useful in developing the spherical Bessel functions (see below).

The Hankel functions admit the following integral representations for Re(*x*) > 0:^{[18]}

where the integration limits indicate integration along a contour that can be chosen as follows: from -? to 0 along the negative real axis, from 0 to ±*i*? along the imaginary axis, and from ±*i*? to +? ± *i*? along a contour parallel to the real axis.^{[15]}

The Bessel functions are valid even for complex arguments x, and an important special case is that of a purely imaginary argument. In this case, the solutions to the Bessel equation are called the **modified Bessel functions** (or occasionally the **hyperbolic Bessel functions**) **of the first and second kind** and are defined as^{[19]}

when ? is not an integer; when ? is an integer, then the limit is used. These are chosen to be real-valued for real and positive arguments x. The series expansion for *I _{?}*(

If -? < arg *x* ?/2, *K*_{?}(*x*) can be expressed as a Hankel function of the first kind:

and if - < arg *x* , it can be expressed as a Hankel function of the second kind:

We can express the first and second Bessel functions in terms of the modified Bessel functions (these are valid if -? < arg *z* ?/2):

*I _{?}*(

Unlike the ordinary Bessel functions, which are oscillating as functions of a real argument, I_{?} and K_{?} are exponentially growing and decaying functions respectively. Like the ordinary Bessel function J_{?}, the function I_{?} goes to zero at *x* = 0 for *?* > 0 and is finite at *x* = 0 for *?* = 0. Analogously, K_{?} diverges at *x* = 0 with the singularity being of logarithmic type.^{[21]}

Two integral formulas for the modified Bessel functions are (for Re(*x*) > 0):^{[22]}

In some calculations in physics, it can be useful to know that the following relation holds:

It can be proven by showing equality to the above integral definition for *K*_{0}. This is done by integrating a closed curve in the first quadrant of the complex plane.

Modified Bessel functions *K*_{1/3} and *K*_{2/3} can be represented in terms of rapidly convergent integrals^{[23]}

The **modified Bessel function of the second kind** has also been called by the following names (now rare):

**Basset function**after Alfred Barnard Basset**Modified Bessel function of the third kind****Modified Hankel function**^{[24]}**Macdonald function**after Hector Munro Macdonald

When solving the Helmholtz equation in spherical coordinates by separation of variables, the radial equation has the form

The two linearly independent solutions to this equation are called the **spherical Bessel functions** j_{n} and y_{n}, and are related to the ordinary Bessel functions J_{n} and Y_{n} by^{[25]}

y_{n} is also denoted n_{n} or ?_{n}; some authors call these functions the **spherical Neumann functions**.

The spherical Bessel functions can also be written as (**Rayleigh's formulas**)^{[26]}

The first spherical Bessel function *j*_{0}(*x*) is also known as the (unnormalized) sinc function. The first few spherical Bessel functions are:^{[27]}

and^{[28]}

The spherical Bessel functions have the generating functions^{[29]}

In the following, f_{n} is any of j_{n}, y_{n}, *h*^{(1)}_{n}, *h*^{(2)}_{n} for *n* = 0, ±1, ±2, ...^{[30]}

There are also spherical analogues of the Hankel functions:

In fact, there are simple closed-form expressions for the Bessel functions of half-integer order in terms of the standard trigonometric functions, and therefore for the spherical Bessel functions. In particular, for non-negative integers n:

and *h*^{(2)}_{n} is the complex-conjugate of this (for real x). It follows, for example, that *j*_{0}(*x*) = and *y*_{0}(*x*) = -, and so on.

The spherical Hankel functions appear in problems involving spherical wave propagation, for example in the multipole expansion of the electromagnetic field.

Riccati-Bessel functions only slightly differ from spherical Bessel functions:

They satisfy the differential equation

For example, this kind of differential equation appears in quantum mechanics while solving the radial component of the Schrödinger's equation with hypothetical cylindrical infinite potential barrier.^{[31]} This differential equation, and the Riccati-Bessel solutions, also arises in the problem of scattering of electromagnetic waves by a sphere, known as Mie scattering after the first published solution by Mie (1908). See e.g., Du (2004)^{[32]} for recent developments and references.

Following Debye (1909), the notation ?_{n}, ?_{n} is sometimes used instead of S_{n}, C_{n}.

The Bessel functions have the following asymptotic forms. For small arguments 0 < *z* √*?* + 1, one obtains, when ? is not a negative integer:^{[3]}

When ? is a negative integer, we have

For the Bessel function of the second kind we have three cases:

where ? is the Euler-Mascheroni constant (0.5772...).

For large real arguments *z* >> ||, one cannot write a true asymptotic form for Bessel functions of the first and second kind (unless ? is half-integer) because they have zeros all the way out to infinity, which would have to be matched exactly by any asymptotic expansion. However, for a given value of arg *z* one can write an equation containing a term of order ||^{-1}:^{[33]}

(For *?* = the last terms in these formulas drop out completely; see the spherical Bessel functions above.) Even though these equations are true, better approximations may be available for complex z. For example, *J*_{0}(*z*) when z is near the negative real line is approximated better by

than by

The asymptotic forms for the Hankel functions are:

These can be extended to other values of arg *z* using equations relating *H*^{(1)}_{?}(*ze*^{im?}) and *H*^{(2)}_{?}(*ze*^{im?}) to *H*^{(1)}_{?}(*z*) and *H*^{(2)}_{?}(*z*).^{[34]}

It is interesting that although the Bessel function of the first kind is the average of the two Hankel functions, *J _{?}*(

For the modified Bessel functions, Hankel developed asymptotic expansions as well:^{[35]}^{[36]}

When *?* = , all the terms except the first vanish, and we have

For small arguments 0 < || √*?* + 1, we have

For integer order *?* = *n*, J_{n} is often defined via a Laurent series for a generating function:

an approach used by P. A. Hansen in 1843. (This can be generalized to non-integer order by contour integration or other methods.) Another important relation for integer orders is the *Jacobi-Anger expansion*:

and

which is used to expand a plane wave as a sum of cylindrical waves, or to find the Fourier series of a tone-modulated FM signal.

More generally, a series

is called Neumann expansion of f. The coefficients for *?* = 0 have the explicit form

where O_{k} is Neumann's polynomial.^{[37]}

Selected functions admit the special representation

with

due to the orthogonality relation

More generally, if f has a branch-point near the origin of such a nature that

then

or

where L{ *f* } is the Laplace transform of f.^{[38]}

Another way to define the Bessel functions is the Poisson representation formula and the Mehler-Sonine formula:

where ? > - and *z* ? **C**.^{[39]}
This formula is useful especially when working with Fourier transforms.

Because Bessel's equation becomes Hermitian (self-adjoint) if it is divided by x, the solutions must satisfy an orthogonality relationship for appropriate boundary conditions. In particular, it follows that:

where *?* > -1, *?*_{m,n} is the Kronecker delta, and *u*_{?,m} is the mth zero of *J _{?}*(

An analogous relationship for the spherical Bessel functions follows immediately:

If one defines a boxcar function of x that depends on a small parameter ? as:

(where rect is the rectangle function) then the Hankel transform of it (of any given order *?* > -), *g _{?}*(

which is zero everywhere except near 1. As ? approaches zero, the right-hand side approaches *?*(*x* - 1), where ? is the Dirac delta function. This admits the limit (in the distributional sense):

A change of variables then yields the *closure equation*:^{[40]}

for *?* > -. The Hankel transform can express a fairly arbitrary function^{[clarification needed]}as an integral of Bessel functions of different scales. For the spherical Bessel functions the orthogonality relation is:

for *?* > -1.

Another important property of Bessel's equations, which follows from Abel's identity, involves the Wronskian of the solutions:

where A_{?} and B_{?} are any two solutions of Bessel's equation, and C_{?} is a constant independent of x (which depends on ? and on the particular Bessel functions considered). In particular,

and

for *?* > -1.

For *?* > -1, the even entire function of genus 1, *x*^{-?}*J _{?}*(

be all its positive zeros, then

(There are a large number of other known integrals and identities that are not reproduced here, but which can be found in the references.)

The functions J_{?}, Y_{?}, *H*^{(1)}_{?}, and *H*^{(2)}_{?} all satisfy the recurrence relations^{[41]}

and

where Z denotes J, Y, *H*^{(1)}, or *H*^{(2)}. (These two identities are often combined, e.g. added or subtracted, to yield various other relations.) In this way, for example, one can compute Bessel functions of higher orders (or higher derivatives) given the values at lower orders (or lower derivatives). In particular, it follows that^{[42]}

*Modified* Bessel functions follow similar relations:

and

The recurrence relation reads

where C_{?} denotes I_{?} or *e*^{?i?}*K _{?}*. These recurrence relations are useful for discrete diffusion problems.

The Bessel functions obey a multiplication theorem

where ? and ? may be taken as arbitrary complex numbers.^{[43]}^{[44]} For || < 1,^{[43]} the above expression also holds if J is replaced by Y. The analogous identities for modified Bessel functions and || < 1 are

and

Bessel himself originally proved that for nonnegative integers n, the equation *J*_{n}(*x*) = 0 has an infinite number of solutions in x.^{[45]} When the functions *J*_{n}(*x*) are plotted on the same graph, though, none of the zeros seem to coincide for different values of n except for the zero at *x* = 0. This phenomenon is known as **Bourget's hypothesis** after the 19th-century French mathematician who studied Bessel functions. Specifically it states that for any integers *n* >= 0 and *m* >= 1, the functions *J _{n}*(

For numerical studies about the zeros of the Bessel function, see Gil, Segura & Temme (2007) and Moler (2004).

- Anger function
- Bessel-Clifford function
- Bessel-Maitland function
- Bessel polynomials
- Fourier-Bessel series
- Hahn-Exton q-Bessel function
- Hankel transform
- Jackson q-Bessel function
- Kelvin functions
- Kontorovich-Lebedev transform
- Lerche-Newberger sum rule
- Lommel function
- Lommel polynomial
- Neumann polynomial
- Sonine formula
- Struve function
- Vibrations of a circular drum
- Weber function

**^**Weisstein, Eric W. "Spherical Bessel Function of the Second Kind".*MathWorld*.**^**Weisstein, Eric W. "Bessel Function of the Second Kind".*MathWorld*.- ^
^{a}^{b}Abramowitz and Stegun, p. 360, 9.1.10. **^**Abramowitz and Stegun, p. 358, 9.1.5.- ^
^{a}^{b}^{c}Temme, Nico M. (1996).*Special Functions: An introduction to the classical functions of mathematical physics*(2nd print ed.). New York: Wiley. pp. 228-231. ISBN 0471113131. **^**Watson, p. 176**^**"Archived copy". Archived from the original on 2010-09-23. Retrieved .**^**"Integral representations of the Bessel function".*www.nbi.dk*. Retrieved 2018.**^**Arfken & Weber, exercise 11.1.17.**^**Abramowitz and Stegun, p. 362, 9.1.69.**^**Szeg?, Gábor (1975).*Orthogonal Polynomials*(4th ed.). Providence, RI: AMS.**^**http://www.mhtlab.uwaterloo.ca/courses/me755/web_chap4.pdf**^**NIST Digital Library of Mathematical Functions, (10.8.1). Accessed on line Oct. 25, 2016.**^**Weisstein, Eric W. "Bessel Function of the Second Kind".*MathWorld*.- ^
^{a}^{b}Watson, p. 178. **^**Abramowitz and Stegun, p. 358, 9.1.3, 9.1.4.**^**Abramowitz and Stegun, p. 358, 9.1.6.**^**Abramowitz and Stegun, p. 360, 9.1.25.**^**Abramowitz and Stegun, p. 375, 9.6.2, 9.6.10, 9.6.11.**^**Abramowitz and Stegun, p. 374, 9.6.1.**^**Greiner, Walter; Reinhardt, Joachim (2009).*Quantum Electrodynamics*. Springer. p. 72. ISBN 978-3-540-87561-1.**^**Watson, p. 181.**^**Khokonov, M. Kh. (2004). "Cascade Processes of Energy Loss by Emission of Hard Photons".*Journal of Experimental and Theoretical Physics*.**99**(4): 690-707. doi:10.1134/1.1826160.. Derived from formulas sourced to I. S. Gradshteyn and I. M. Ryzhik,*Table of Integrals, Series, and Products*(Fizmatgiz, Moscow, 1963; Academic Press, New York, 1980).**^**Referred to as such in: Teichroew, D. (1957). "The Mixture of Normal Distributions with Different Variances".*The Annals of Mathematical Statistics*.**28**(2): 510-512. doi:10.1214/aoms/1177706981.**^**Abramowitz and Stegun, p. 437, 10.1.1.**^**Abramowitz and Stegun, p. 439, 10.1.25, 10.1.26.**^**Abramowitz and Stegun, p. 438, 10.1.11.**^**Abramowitz and Stegun, p. 438, 10.1.12.**^**Abramowitz and Stegun, p. 439, 10.1.39.**^**Abramowitz and Stegun, p. 439, 10.1.23, 10.1.24.**^**Griffiths. Introduction to Quantum Mechanics, 2nd edition, p. 154.**^**Du, Hong (2004). "Mie-scattering calculation".*Applied Optics*.**43**(9): 1951-1956. doi:10.1364/ao.43.001951.**^**Abramowitz and Stegun, p. 364, 9.2.1.**^**NIST Digital Library of Mathematical Functions, Section 10.11.**^**Abramowitz and Stegun, p. 377, 9.7.1.**^**Abramowitz and Stegun, p. 378, 9.7.2.**^**Abramowitz and Stegun, p. 363, 9.1.82 ff.**^**Watson, G. N. (25 August 1995). "A Treatise on the Theory of Bessel Functions". Cambridge University Press. Retrieved 2018 – via Google Books.**^**Gradshteyn, Izrail Solomonovich; Ryzhik, Iosif Moiseevich; Geronimus, Yuri Veniaminovich; Tseytlin, Michail Yulyevich; Jeffrey, Alan (2015) [October 2014]. "8.411.10.". In Zwillinger, Daniel; Moll, Victor Hugo.*Table of Integrals, Series, and Products*. Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 0-12-384933-0. LCCN 2014010276. ISBN 978-0-12-384933-5.**^**Arfken & Weber, section 11.2**^**Abramowitz and Stegun, p. 361, 9.1.27.**^**Abramowitz and Stegun, p. 361, 9.1.30.- ^
^{a}^{b}Abramowitz and Stegun, p. 363, 9.1.74. **^**Truesdell, C. (1950). "On the Addition and Multiplication Theorems for the Special Functions" (PDF).*Proceedings of the National Academy of Sciences, Mathematics*.**1950**: 752-757.**^**Bessel, F. (1824) "Untersuchung des Theils der planetarischen Störungen",*Berlin Abhandlungen*, article 14.**^**Watson, pp. 484-485.

- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 9".
*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*. Applied Mathematics Series.**55**(Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 355, 435. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. See also chapter 10. - Arfken, George B. and Hans J. Weber,
*Mathematical Methods for Physicists*, 6th edition (Harcourt: San Diego, 2005). ISBN 0-12-059876-0. - Bayin, S. S.
*Mathematical Methods in Science and Engineering*, Wiley, 2006, Chapter 6. - Bayin, S. S.,
*Essentials of Mathematical Methods in Science and Engineering*, Wiley, 2008, Chapter 11. - Bowman, Frank
*Introduction to Bessel Functions*(Dover: New York, 1958). ISBN 0-486-60462-4. - Mie, G. (1908). "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen".
*Ann. Phys. Leipzig*.**25**: 377. - Olver, F. W. J.; Maximon, L. C. (2010), "Bessel function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W.,
*NIST Handbook of Mathematical Functions*, Cambridge University Press, ISBN 978-0521192255, MR 2723248. - Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007), "Section 6.5. Bessel Functions of Integer Order",
*Numerical Recipes: The Art of Scientific Computing*(3rd ed.), New York: Cambridge University Press, ISBN 978-0-521-88068-8. - B Spain, M. G. Smith,
*Functions of mathematical physics*, Van Nostrand Reinhold Company, London, 1970. Chapter 9 deals with Bessel functions. - N. M. Temme,
*Special Functions. An Introduction to the Classical Functions of Mathematical Physics*, John Wiley and Sons, Inc., New York, 1996. ISBN 0-471-11313-1. Chapter 9 deals with Bessel functions. - Watson, G. N.,
*A Treatise on the Theory of Bessel Functions, Second Edition*, (1995) Cambridge University Press. ISBN 0-521-48391-3. - Weber, H. (1873), "Ueber eine Darstellung willkürlicher Functionen durch Bessel'sche Functionen",
*Mathematische Annalen*,**6**(2): 146-161, doi:10.1007/BF01443190. - Gil, A., Segura, J., Temme, N. M. (2007). Numerical methods for special functions. Society for Industrial and Applied Mathematics.

- Lizorkin, P. I. (2001) [1994], "Bessel functions", in Hazewinkel, Michiel,
*Encyclopedia of Mathematics*, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4. - Karmazina, L. N.; Prudnikov, A.P. (2001) [1994], "Cylinder function", in Hazewinkel, Michiel,
*Encyclopedia of Mathematics*, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4. - Rozov, N. Kh. (2001) [1994], "Bessel equation", in Hazewinkel, Michiel,
*Encyclopedia of Mathematics*, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4. - Wolfram function pages on Bessel J and Y functions, and modified Bessel I and K functions. Pages include formulas, function evaluators, and plotting calculators.
- Wolfram Mathworld - Bessel functions of the first kind.
- Bessel functions J
_{?}, Y_{?}, I_{?}and K_{?}in Librow Function handbook. - F. W. J. Olver, L. C. Maximon, Bessel Functions (chapter 10 of the Digital Library of Mathematical Functions).
- C. B. Moler, [1]. Numerical Computing with MATLAB. The MathWorks, Inc. Society for Industrial and Applied Mathematics.

This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Top US Cities

United States

Like2do.com was developed using defaultLogic.com's knowledge management platform. It allows users to manage learning and research. Visit defaultLogic's other partner sites below: