Induced Polarization
Get Induced Polarization essential facts below. View Videos or join the Induced Polarization discussion. Add Induced Polarization to your topic list for future reference or share this resource on social media.
Induced Polarization

Induced polarization (IP) is a geophysical imaging technique used to identify the electrical chargeability of subsurface materials, such as ore.[1][2]

The polarization effect was originally discovered by Conrad Schlumberger when measuring the resistivity of rock.[3]

The survey method is similar to electrical resistivity tomography (ERT), in that an electric current is transmitted into the subsurface through two electrodes, and voltage is monitored through two other electrodes.

Induced polarization is a geophysical method used extensively in mineral exploration and mine operations. Resistivity and IP methods are often applied on the ground surface using multiple four-electrode sites. In an IP survey, in addition to resistivity measurement, capacitive properties of the subsurface materials are determined as well. As a result, IP surveys provide additional information about the spatial variation in lithology and grain-surface chemistry.

The IP survey can be made in time-domain and frequency-domain mode:

In the time-domain induced polarization method, voltage decay is observed as a function of time after the injected current is switched off.

In the frequency-domain induced polarization mode, an alternating current is injected into the ground with variable frequencies. Voltage phase-shifts are measured to evaluate the impedance spectrum at different injection frequencies, which is commonly referred to as spectral IP.

The IP method is one of the most widely used techniques in mineral exploration and mining industry and it has other applications in hydrogeophysical surveys, environmental investigations and geotechnical engineering projects.[4]

Measurement methods

Time domain

Typical transmitted current waveform and potential response for time domain resistivity and induced polarization measurements.

Time-domain IP methods measure considers the resulting voltage following a change in the injected current. The time domain IP potential response can be evaluated by considering the mean value on the resulting voltage, known as integral chargeability[2] or by evaluating the spectral information and considering the shape of the potential response, for example describing the response with a Cole-Cole model.[5]

Frequency domain

Frequency-domain IP methods uses alternating currents (AC) to induce electric charges in the subsurface, and the apparent resistivity is measured at different AC frequencies.

See also


  1. ^ Bleil, David Franklin (July 1953). "Induced Polarisation: A Method of Geophysical Prospecting". Geophysics. 18 (3): 636-661. doi:10.1190/1.1437917. Retrieved .
  2. ^ a b Zonge, Ken; Wynn, Jeff; Urquhart, Scott (2005). "Chapter 9. Resistivity, Induced Polarization, and Complex Resistivity". In Butler, Dwain K. Near-Surface Geophysics - Investigations in Geophysics. Society of Exploration Geophysicists (SEG). pp. 265-300. doi:10.1190/1.9781560801719.ch9. ISBN 978-1-56080-130-6. ISBN 978-1-56080-171-9.
  3. ^ Allaud, Louis A.; Martin, Maurice H. (1977-10-01). Schlumberger - The History of a Technique. Translated by Schwob, Marcel. New York, USA: John Wiley & Sons, Inc. ISBN 047101667-5.
  4. ^ "Induced Polarization (IP) What Is It?". Surface Search Inc. 2018. Archived from the original on 2018-05-17. Retrieved .
  5. ^ Pelton, William H.; Ward, Stanley H.; Hallof, Philip G.; Sill, William R.; Nelson, Philip H. (1978-04-01). "Mineral discrimination and removal of inductive coupling with multifrequency IP". Geophysics. 43 (3): 588-609. doi:10.1190/1.1440839.

Further reading

External links

  • [1] Example IP equipment and image results

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.



Top US Cities was developed using's knowledge management platform. It allows users to manage learning and research. Visit defaultLogic's other partner sites below: : Music Genres | Musicians | Musical Instruments | Music Industry