In recreational mathematics and combinatorial design, a magic square^{[1]} is a square grid (where n is the number of cells on each side) filled with distinct positive integers in the range such that each cell contains a different integer and the sum of the integers in each row, column and diagonal is equal.^{[2]} The sum is called the magic constant or magic sum of the magic square. A square grid with n cells on each side is said to have order n.
The mathematical study of magic squares typically deals with its construction, classification, and enumeration. Although completely general methods for producing all the magic squares of all orders do not exist, historically three general techniques have been discovered: by bordering method, by making composite magic squares, and by adding two preliminary squares. There are also more specific strategies like the continuous enumeration method that reproduces specific patterns. The magic squares are generally classified according to their order n as: odd if n is odd, evenly even (also referred to as doubly even) if n = 4k (e.g. 4, 8, 12, and so on), oddly even (also known as singly even) if n = 4k + 2 (e.g. 6, 10, 14, and so on). This classification is based on different techniques required to construct odd, evenly even, and oddly even squares. Beside this, depending on further properties, magic squares are also classified as associated magic squares, pandiagonal magic squares, mostperfect magic square, and so on. More challengingly, attempts have also been made to classify all the magic squares of a given order as transformations of a smaller set of squares. Except for n
In regard to magic sum, the problem of magic squares only requires the sum of each row, column and diagonal to be equal, it does not require the sum to be a particular value. Thus, although magic squares may contain negative integers, they are just variations by adding or multiplying a negative number to every positive integer in the original square.^{[3]}^{[4]} Magic squares are also called normal magic squares, in the sense that there are nonnormal magic squares^{[5]} which integers are not restricted in . However, in some places, "magic squares" is used as a general term to cover both the normal and nonnormal ones, especially when nonnormal ones are under discussion. Moreover, the term "magic squares" is sometimes also used to refer to various types of word squares.
Magic squares have a long history, dating back to at least 190 BCE in China. At various times they have acquired magical or mythical significance, and have appeared as symbols in works of art. In modern times they have been generalized a number of ways, including using extra or different constraints, multiplying instead of adding cells, using alternate shapes or more than two dimensions, and replacing numbers with shapes and addition with geometric operations.
The third order magic square was known to Chinese mathematicians as early as 190 BCE, and explicitly given by the first century of the common era. The first datable instance of the fourth order magic square occur in 587 CE in India. Specimens of magic squares of order 3 to 9 appear in an encyclopedia from Baghdad circa 983, the Encyclopedia of the Brethren of Purity (Rasa'il Ihkwan alSafa). By the end of 12th century, the general methods for constructing magic squares were well established. Around this time, some of these squares were increasingly used in conjunction with magic letters, as in Shams Alma'arif, for occult purposes.^{[6]} In India, all the fourth order pandiagonal magic squares were enumerated by Narayana in 1356. Magic squares were made known to Europe through translation of Arabic sources as occult objects during the Renaissance, and the general theory had to be rediscovered independent of prior developments in China, India, and Middle East. Also notable are the ancient cultures with a tradition of mathematics and numerology that did not discover the magic squares: Greeks, Babylonians, Egyptians, and PreColumbian Americans.
While ancient references to the pattern of even and odd numbers in the 3×3 magic square appears in the I Ching, the first unequivocal instance of this magic square appears in a 1st century book Da Dai Liji (Record of Rites by the Elder Dai).^{[7]}^{[8]}^{[9]} These numbers also occur in a possibly earlier mathematical text called Shushu jiyi (Memoir on Some Traditions of Mathematical Art), said to be written in 190 BCE. This is the earliest appearance of a magic square on record; and it was mainly used for divination and astrology.^{[7]} The 3×3 magic square was referred to as the "Nine Halls" by earlier Chinese mathematicians.^{[9]} The identification of the 3×3 magic square to the legendary Luoshu chart was only made in the 12th century, after which it was referred to as the Luoshu square.^{[7]}^{[9]} The oldest surviving Chinese treatise on the systematic methods for constructing larger magic squares is Yang Hui's Xugu zheqi suanfa (Continuation of Ancient Mathematical Methods for Elucidating the Strange) written in 1275.^{[7]}^{[9]} The contents of Yang Hui's treatise were collected from older works, both native and foreign; and he only explains the construction of third and fourth order magic squares, while merely passing on the finished diagrams of larger squares.^{[9]} He gives a magic square of order 3, two squares for each order of 4 to 8, one of order nine, and one semimagic square of order 10. He also gives six magic circles of varying complexity.^{[10]}







The above magic squares of orders 3 to 9 are taken from Yang Hui's treatise, in which the Luo Shu principle is clearly evident.^{[9]}^{[11]} The order 5 square is a bordered magic square, with central 3×3 square formed according to Luo Shu principle. The order 9 square is a composite magic square, in which the nine 3×3 sub squares are also magic.^{[9]} After Yang Hui, magic squares frequently occur in Chinese mathematics such as in Ding Yidong's Dayan suoyin (circa 1300), Chen Dawei's Suanfa tongzong (1593), Fang Zhongtong's Shuduyan (1661) which contains magic circles, cubes and spheres, Zhang Chao's Xinzhai zazu (circa 1650), who published China's the first magic square of order ten, and lastly Bao Qishou's Binaishanfang ji (circa 1880), who gave various three dimensional magic configurations.^{[7]}^{[11]} However, despite being the first to discover the magic squares and getting a head start by several centuries, the Chinese development of the magic squares are much inferior compared to the Islamic, the Indian, or the European developments. The high point of Chinese mathematics that deals with the magic squares seems to be contained in the work of Yang Hui; but even as a collection of older methods, this work is much more primitive, lacking general methods for constructing magic squares of any order, compared to a similar collection written around the same time by the Byzantine scholar Manuel Moschopoulos.^{[9]} This is possibly because of the Chinese scholars' enthralment with the Lo Shu principle, which they tried to adapt to solve higher squares; and after Yang Hui and the fall of Yuan dynasty, their systematic purging of the foreign influences in Chinese mathematics.^{[9]}
Although the early history of magic squares in Persia and Arabia is not known, it has been suggested that they were known in preIslamic times.^{[12]} It is clear, however, that the study of magic squares was common in medieval Islam, and it was thought to have begun after the introduction of chess into the region.^{[13]}^{[14]}^{[15]} The first datable appearance of magic square of order 3 occur in the alchemical works of J?bir ibn Hayy?n (fl. c. 721 c. 815). While it is known that treatises on magic squares were written in the 9th century, the earliest extant treaties we have date from the 10thcentury: one by Abu'lWafa alBuzjani (circa 998) and another by Ali b. Ahmad alAntaki (circa 987).^{[14]}^{[16]}^{[17]} These early treatise were purely mathematical, and the Arabic designation for magic squares is wafq ala'dad which translates as harmonious disposition of the numbers.^{[15]} By the end of 10th century, the two treatises by Buzjani and Antaki makes it clear that the Islamic mathematicians had understood how to construct bordered squares of any order as well as simple magic squares of small orders (n [14] A specimen of magic squares of orders 3 to 9 devised by Islamic mathematicians appear in an encyclopedia from Baghdad circa 983, the Rasa'il Ikhwan alSafa (the Encyclopedia of the Brethren of Purity).^{[18]} The squares of order 3 to 7 from Rasa'il are given below:^{[18]}





The 11th century saw the finding of several ways to construct simple magic squares for odd and evenlyeven orders; the more difficult case of evenlyodd case (n = 4k + 2) was solved by Ibn alHaytham with k even (circa 1040), and completely by the beginning of 12th century, if not already in the latter half of the 11th century.^{[14]} Around the same time, pandiagonal squares were being constructed. Treaties on magic squares were numerous in the 11th and 12th century. These later developments tended to be improvements on or simplifications of existing methods. From the 13th century on wards, magic squares were increasingly put to occult purposes.^{[14]} However, much of these later texts written for occult purposes merely depict certain magic squares and mention their attributes, without describing their principle of construction, with only some authors keeping the general theory alive.^{[14]} One such occultist was the Egyptian Ahmad alBuni (circa 1225), who gave general methods on constructing bordered magic squares; some others were the 17th century Egyptian Shabramallisi and the 18th century Nigerian alKishnawi.^{[19]}
The magic square of order three was described as a childbearing charm^{[20]}^{[21]} since its first literary appearances in the alchemical works of J?bir ibn Hayy?n (fl. c. 721 c. 815)^{[21]}^{[22]} and alGhaz?l? (10581111)^{[23]} and it was preserved in the tradition of the planetary tables. The earliest occurrence of the association of seven magic squares to the virtues of the seven heavenly bodies appear in Andalusian scholar Ibn Zarkali's (known as Azarquiel in Europe) (10291087) Kit?b tadb?r?t alkaw?kib (Book on the Influences of the Planets).^{[24]} A century later, the Egyptian scholar Ahmad alBuni attributed mystical properties to magic squares in his highly influential book Shams alMa'arif (The Book of the Sun of Gnosis and the Subtleties of Elevated Things), which also describes their construction. This tradition about a series of magic squares from order three to nine, which are associated with the seven planets, survives in Greek, Arabic, and Latin versions.^{[25]} There are also references to the use of magic squares in astrological calculations, a practice that seems to have originated with the Arabs.^{[26]}^{[27]}
The 3×3 magic square has been a part of rituals in India since ancient times, and still is today. For instance, the KuberaKolam, a magic square of order three, is commonly painted on floors in India. It is essentially the same as the Lo Shu Square, but with 19 added to each number, giving a magic constant of 72 (below, square on the left). The 3×3 magic square first appears in India in Gargasamhita by Garga, who recommends its use to pacify the nine planets (navagraha). The oldest version of this text dates from 100 CE; however passage on planets could not have been written earlier than 400 CE. The first datable instance of 3×3 magic square in India occur in a medical text Siddhayog (ca. 900 CE) by Vrnda, which was prescribed to women in labor in order to have easy delivery.^{[28]} Vrnda's square is given below (square on the right), which sum to 30.


The earliest unequivocal occurrence of magic square is found in a work called Kaksaputa, composed by the alchemist Nagarjuna around 1st century CE. All of the squares given by Nagarjuna are 4×4 magic squares, and one of them is called Nagarjuniya after him. Nagarjuna gave a method of constructing 4×4 magic square using a primary skeleton square, given an odd or even magic sum. Incidentally, the special Nagarjuniya square cannot be constructed from the method he expounds.^{[29]} The Nagarjuniya square is given below, and has the sum total of 100.


The Nagarjuniya square is a pandiagonal magic square, where the broken diagonals (e.g. 16+22+34+28, 18+24+32+26, etc) sum to 100. It is also an instance of a most perfect magic square, where every 2×2 subsquare, four corners of any 3×3 subsquare, four corners of the 4×4 square, the four corners of any 2×4 or 4×2 subrectangle, and the four corners of oblong diagonals (18+24+32+26 and 10+16+34+40) all sum to 100. Furthermore, the corners of eight trapezoids (16+18+32+34, 44+22+28+6, etc) all sum to 100. The Nagarjuniya square is made up of two arithmetic progressions starting from 6 and 16 with eight terms each, with a common difference between successive terms as 4. When these two progressions are reduced to the normal progression of 1 to 8, we obtain the adjacent square.
The oldest datable magic square in the world is found in an encyclopaedic work written by Varahamihira around 587 CE called Brhat Samhita. The magic square is constructed for the purpose of making perfumes using 4 substances selected from 16 different substances. Each cell of the square represents a particular ingredient, while the number in the cell represents the proportion of the associated ingredient, such that the mixture of any four combination of ingredients along the columns, rows, diagonals, and so on, gives the total volume of the mixture to be 18. Although the book is mostly about divination, the magic square is given as a matter of combinatorial design, and no magical properties are attributed to it.^{[29]}^{[28]}
2  3  5  8 
5  8  2  3 
4  1  7  6 
7  6  4  1 
The square of Varahamihira as given above has sum of 18. Here the numbers 1 to 8 appear twice in the square. It is a pandiagonal magic square. It is also an instance of most perfect magic square. Four different magic squares can be obtained by adding 8 to one of the two sets of 1 to 8 sequence. The sequence is selected such that the number 8 is added exactly twice in each row, each column and each of the main diagonals.^{[30]} One of the possible magic squares is given below:
10  3  13  8 
5  16  2  11 
4  9  7  14 
15  6  12  1 
This magic square is remarkable in that it is a 90 degree rotation of a magic square that appears in the 13th century Islamic world as one of the most popular magic squares.^{[30]} His book also contains a method for constructing a magic square of order four when a constant sum is given. It also contains the Nagarjuniya square.^{[28]}
Around 12thcentury, a 4×4 magic square was inscribed on the wall of Parshvanath temple in Khajuraho, India. Several Jain hyms teach how to make magic squares, although they are undatable.^{[28]}
As far as is known, the first systematic study of magic squares in India was conducted by Thakkar Pheru, a Jain scholar, in his Ganitasara Kaumudi (ca. 1315). This work contains a small section on magic squares which consists of nine verses. Here he gives a square of order four, and alludes to its rearrangement; classifies magic squares into three (odd, evenly even, and oddly even) according to its order; gives a square of order six; and prescribes one method each for constructing even and odd squares.^{[28]} For the even squares, Pheru divides the square into component squares of order four, and puts the numbers into cells according to the pattern of a standard square of order four.^{[28]} For odd squares, Pheru gives the method using horse move or knight's move. Although algorithmically different, it gives the same square as the De la Loubere's method.^{[28]} Below is Pheru's square of order six.^{[28]}
1  32  34  33  5  6 
30  8  28  27  11  7 
24  23  15  16  14  19 
13  20  21  22  17  18 
12  26  9  10  29  25 
31  2  4  3  35  36 
The next comprehensive work on magic figures was taken up by Narayana Pandit, who in the fourteenth chapter of his Ganita Kaumudi (1356) gives general methods for the constructions of all sorts of magic squares with the principles governing such constructions. It consists of 55 verses for rules and 17 verses for examples. Narayana gives the method to make a magic squares of order four using knight's move; enumerates the number of pandiagonal magic squares of order four, 384, including every variation made by rotation and inversion; three general methods for squares having any order and constant sum when a standard square of the same order is known; two methods each for constructing evenly even, oddly even, and odd squares when the sum is given. While Narayana recounts some older methods of construction, his folding method seems to be his own invention, which was later rediscovered by De la Hire. In the last section, he conceives of other figures, such as circles, rectangles, and hexagons, in which the numbers may be arranged to possess properties similar to those of magic squares.^{[29]}^{[28]} Below is an example of 4×4 magic square constructed by knight's move as given by Narayana. This is also a pandiagonal as well as a mostperfect magic square.
1  14  4  15 
8  11  5  10 
13  2  16  3 
12  7  9  6 
Incidentally, Narayana states that the purpose of studying magic squares is to construct yantra, to destroy the ego of bad mathematicians, and for the pleasure of good mathematicians. The subject of magic squares is referred to as bhadraganita and Narayana states that it was first taught to men by god Shiva.^{[28]}
Unlike in Persia and Arabia, we have better documentation of how the magic squares were transmitted to Europe. Around 1315, influenced by Islamic sources, the Greek Byzantine scholar Manuel Moschopoulos wrote a mathematical treatise on the subject of magic squares, leaving out the mysticism of his Muslim predecessors, where he gave two methods for odd squares and two methods for evenly even squares. Moschopoulos was essentially unknown to the Latin Europe until the late 17th century, when Philippe de la Hire rediscovered his treatise in the Royal Library of Paris.^{[31]} However, he was not the first European to have written on magic squares; and the magic squares were disseminated to rest of Europe through Spain and Italy as occult objects. The early occult treaties that displayed the squares did not describe how they were constructed. Thus the entire theory had to be rediscovered.
Magic squares had first appeared in Europe in Kit?b tadb?r?t alkaw?kib (Book on the Influences of the Planets) written by Ibn Zarkali of Toledo, AlAndalus, as planetary squares by 11th century.^{[24]} The magic square of three was discussed in numerological manner in early 12th century by Jewish scholar Abraham ibn Ezra of Toledo, which influenced later Kabbalists.^{[32]} Ibn Zarkali's work was translated as Libro de Astromagia in the 1280s,^{[33]} due to Alfonso X of Castille.^{[34]}^{[24]} In the Alfonsine text, magic squares of different orders are assigned to the respective planets, as in the Islamic literature; unfortunately, of all the squares discussed, the Mars magic square of order five is the only square exhibited in the manuscript.^{[35]}^{[24]}
Magic squares surface again in Florence, Italy in the 14th century. A 6×6 and a 9×9 square are exhibited in a manuscript of the Trattato d'Abbaco (Treatise of the Abacus) by Paolo Dagomari.^{[36]}^{[37]} It is interesting to observe that Paolo Dagomari, like Pacioli after him, refers to the squares as a useful basis for inventing mathematical questions and games, and does not mention any magical use. Incidentally, though, he also refers to them as being respectively the Sun's and the Moon's squares, and mentions that they enter astrological calculations that are not better specified. As said, the same point of view seems to motivate the fellow Florentine Luca Pacioli, who describes 3×3 to 9×9 squares in his work De Viribus Quantitatis by the end of 15th century.^{[38]}^{[39]}
The planetary squares had disseminated into northern Europe by the end of 15th century. For instance, the Cracow manuscript of Picatrix from Poland displays magic squares of orders 3 to 9. The same set of squares as in the Cracow manuscript later appears in the writings of Paracelsus in Archidoxa Magica (1567), although in highly garbled form. In 1514 Albrecht Dürer immortalized a 4×4 square in his famous engraving Melencolia I. Paracelsus' contemporary Heinrich Cornelius Agrippa von Nettesheim published his famous book De occulta philosophia in 1531, where he devoted a chapter to the planetary squares. The same set of squares given by Agrippa reappear in 1539 in Practica Arithmetice by Girolamo Cardano. The tradition of planetary squares was continued into the 17th century by Athanasius Kircher in Oedipi Aegyptici (1653). In Germany, mathematical treaties concerning magic squares were written in 1544 by Michael Stifel in Arithmetica Integra, who rediscovered the bordered squares, and Adam Riese, who rediscovered the continuous numbering method to construct odd ordered squares published by Agrippa. However, due to the religious upheavals of that time, these work were unknown to the rest of Europe.^{[32]}
In 1624 France, Claude Gaspard Bachet described the "diamond method" for constructing Agrippa's odd ordered squares in his book Problèmes Plaisants. In 1691, Simon de la Loubère described the Indian continuous method of constructing odd ordered magic squares in his book Du Royaume de Siam, which he had learned while returning from a diplomatic mission to Siam, which was faster than Bachet's method. In an attempt to explain its working, de la Loubere used the primary numbers and root numbers, and rediscovered the method of adding two preliminary squares. This method was further investigated by Abbe Poignard in Traité des quarrés sublimes (1704), and then later by Philippe de La Hire in Mémoires de l'Académie des Sciences for the Royal Academy (1705), and by Joseph Sauveur in Construction des quarrés magiques (1710). In Divers ouvrages de mathematique et de physique published posthumously in 1693, Bernard Frenicle de Bessy demonstrated that there were exactly 880 distinct magic squares of order four. De la Hire also introduced concentric bordered square in 1705, while Sauveur introduced magic cubes and lettered squares, which was taken up later by Euler in 1776, who is often credited for devising them. In 1750 d'OnsleBray rediscovered the method of constructing doubly even and singly even squares using bordering technique. By this time the earlier mysticism attached to the magic squares had completely vanished, and the subject was treated as a part of recreational mathematics.^{[32]}^{[40]}
In the 19th century, Bernard Violle gave a comprehensive treatment of magic squares in his three volume Traité complet des carrés magiques (18371838), which also described magic cubes, parallelograms, parallelopipeds, and circles. Pandiagonal squares were extensively studied by Andrew Hollingworth Frost, who learned it while in the town of Nasik, India, (thus calling them Nasik squares) in a series of articles: On the knight's path (1877), On the General Properties of Nasik Squares (1878), On the General Properties of Nasik Cubes (1878), On the construction of Nasik Squares of any order (1896). He showed that it is impossible to have normal singlyeven pandiagonal magic square. Frederick A.P. Barnard constructed inlaid magic squares and other three dimensional magic figures like magic spheres and magic cylinders in Theory of magic squares and of magic cubes (1888).^{[40]} In 1897, Emroy McClintock published On the most perfect form of magic squares, coining the words pandiagonal square and most perfect square, which had previously been referred to as perfect, or diabolic, or Nasik.
Legends dating from as early as 650 BC tell the story of the Lo Shu () or "scroll of the river Lo".^{[11]} According to the legend, there was at one time in ancient China a huge flood. While the great king Yu was trying to channel the water out to sea, a turtle emerged from it with a curious pattern on its shell: a 3×3 grid in which circular dots of numbers were arranged, such that the sum of the numbers in each row, column and diagonal was the same: 15. According to the legend, thereafter people were able to use this pattern in a certain way to control the river and protect themselves from floods. The Lo Shu Square, as the magic square on the turtle shell is called, is the unique normal magic square of order three in which 1 is at the bottom and 2 is in the upper right corner. Every normal magic square of order three is obtained from the Lo Shu by rotation or reflection.
There is a wellknown 12thcentury 4×4 magic square inscribed on the wall of the Parshvanath temple in Khajuraho, India.^{[29]}^{[28]}^{[41]}
7  12  1  14 
2  13  8  11 
16  3  10  5 
9  6  15  4 
This is known as the Chautisa Yantra since its magic sum is 34. It is one of the three 4×4 pandiagonal magic squares and is also an instance of the mostperfect magic square. The study of this square led to the appreciation of pandiagonal squares by European mathematicians in the late 19th century. Pandiagonal squares were referred to as Nasik squares or Jain squares in older English literature.
The order four magic square Albrecht Dürer immortalized in his 1514 engraving Melencolia I,, referred to above, is believed to be the first seen in European art. The square associated with Jupiter appears as a talisman used to drive away melancholy. It is very similar to Yang Hui's square, which was created in China about 250 years before Dürer's time. The sum 34 can be found in the rows, columns, diagonals, each of the quadrants, the center four squares, and the corner squares (of the 4×4 as well as the four contained 3×3 grids). This sum can also be found in the four outer numbers clockwise from the corners (3+8+14+9) and likewise the four counterclockwise (the locations of four queens in the two solutions of the 4 queens puzzle^{[42]}), the two sets of four symmetrical numbers (2+8+9+15 and 3+5+12+14), the sum of the middle two entries of the two outer columns and rows (5+9+8+12 and 3+2+15+14), and in four kite or cross shaped quartets (3+5+11+15, 2+10+8+14, 3+9+7+15, and 2+6+12+14). The two numbers in the middle of the bottom row give the date of the engraving: 1514. The numbers 1 and 4 at either side of the date correspond respectively to the letters "A" and "D," which are the initials of the artist.
16  3  2  13 
5  10  11  8 
9  6  7  12 
4  15  14  1 
Dürer's magic square can also be extended to a magic cube.^{[43]}
The Passion façade of the Sagrada Família church in Barcelona, conceptualized by Antoni Gaudí and designed by sculptor Josep Subirachs, features a 4×4 magic square: The magic constant of the square is 33, the age of Jesus at the time of the Passion.^{[44]} Structurally, it is very similar to the Melancholia magic square, but it has had the numbers in four of the cells reduced by 1.
1  14  14  4 
11  7  6  9 
8  10  10  5 
13  2  3  15 
While having the same pattern of summation, this is not a normal magic square as above, as two numbers (10 and 14) are duplicated and two (12 and 16) are absent, failing the 1>n^{2} rule. Similarly to Dürer's magic square, the Sagrada Familia's magic square can also be extended to a magic cube.^{[45]}
The constant that is the sum of every row, column and diagonal is called the magic constant or magic sum, M. Every normal magic square has a constant dependent on the order n, calculated by the formula , since the sum of is which when divided by the order n is the magic constant. For normal magic squares of orders n = 3, 4, 5, 6, 7, and 8, the magic constants are, respectively: 15, 34, 65, 111, 175, and 260 (sequence A006003 in the OEIS).
The 1×1 magic square, with only one cell containing the number 1, is called trivial, because it is typically not under consideration when discussing magic squares; but it is indeed a magic square by definition, if we regard a single cell as a square of order one.
Normal magic squares of all sizes can be constructed except 2×2 (that is, where order n = 2).^{[46]}
Excluding rotations and reflections, there is exactly one 3×3 magic square, exactly 880 4×4 magic squares, and exactly 275,305,224 5×5 magic squares. For the 6×6 case, there are estimated to be approximately 1.8 × 10^{19} squares.^{[47]}
If we think of the numbers in the magic square as masses located in various cells, then the center of mass of a magic square coincides with its geometric center.
The moment of inertia of a magic square has been defined as the sum over all cells of the number in the cell times the squared distance from the center of the cell to the center of the square; here the unit of measurement is the width of one cell.^{[47]} (Thus for example a corner cell of a 3×3 square has a distance of a noncorner edge cell has a distance of 1, and the center cell has a distance of 0.) Then all magic squares of a given order have the same moment of inertia as each other. For the order3 case the moment of inertia is always 60, while for the order4 case the moment of inertia is always 340. In general, for the n×n case the moment of inertia is ^{[47]}
Dividing each number of the magic square by the magic constant will yield a doubly stochastic matrix, whose row sums and column sums equal to unity. However, unlike the doubly stochastic matrix, the diagonal sums of such matrices will also equal to unity. Thus, such matrices constitute a subset of doubly stochastic matrix. The Birkhoffvon Neumann theorem states that for any doubly stochastic matrix , there exists real numbers , where and permutation matrices such that
This representation may not be unique in general. By MarcusRee theorem, however, there need not be more than terms in any decomposition.^{[48]} Clearly, this decomposition carries over to magic squares as well, since we can recover a magic square from a doubly stochastic matrix by multiplying it by the magic constant.
While the classification of magic squares can be done in many way, some useful categories are given below. An n×n square array of integers 1, 2, ..., n^{2} is called:






























There are many ways to construct magic squares, but the standard (and most simple) way is to follow certain configurations/formulas which generate regular patterns. After a magic square has been constructed using some standard formula, the transformations described in the previous section can be applied to yield further magic squares. Magic squares exist for all values of n, with only one exception: it is impossible to construct a magic square of order 2. Magic squares can be classified into three types: odd, doubly even (n divisible by four) and singly even (n even, but not divisible by four). Odd and doubly even magic squares are easy to generate; the construction of singly even magic squares is more difficult but several methods exist, including the LUX method for magic squares (due to John Horton Conway) and the Strachey method for magic squares.
Group theory was also used for constructing new magic squares of a given order from one of them.^{[51]}
Unsolved problem in mathematics: How many magic squares, and how many magic tori of order n, are there for ? (more unsolved problems in mathematics)

The numbers of different n×n magic squares for n from 1 to 5, not counting rotations and reflections are: 1, 0, 1, 880, 275305224 (sequence in the OEIS). The number for n = 6 has been estimated to be ^{[52]}^{[53]}
Crossreferenced to the above sequence, a new classification enumerates the magic tori that display these magic squares. The numbers of magic tori of order n from 1 to 5, are: 1, 0, 1, 255, 251449712 (sequence in the OEIS).
In the 19th century, Édouard Lucas devised the general formula for order 3 magic squares. Consider the following table made up of positive integers a, b and c:
c − b  c + (a + b)  c − a 
c − (a − b)  c  c + (a − b) 
c + a  c − (a + b)  c + b 
These 9 numbers will be distinct positive integers forming a magic square so long as 0 < a < b < c − a and b ? 2a. Moreover, every 3×3 square of distinct positive integers is of this form.
In 1997 Lee Sallows discovered that leaving aside rotations and reflections, then every distinct parallelogram drawn on the Argand diagram defines a unique 3×3 magic square, and vice versa, a result that had never previously been noted.^{[50]}
A method for constructing magic squares of odd order was published by the French diplomat de la Loubère in his book, A new historical relation of the kingdom of Siam (Du Royaume de Siam, 1693), in the chapter entitled The problem of the magical square according to the Indians.^{[54]} The method operates as follows:
The method prescribes starting in the central column of the first row with the number 1. After that, the fundamental movement for filling the squares is diagonally up and right, one step at a time. If a filled square is encountered, one moves vertically down one square instead, then continues as before. When an "up and to the right" move would leave the square, it is wrapped around to the last row or first column, respectively.









Starting from other squares rather than the central column of the first row is possible, but then only the row and column sums will be identical and result in a magic sum, whereas the diagonal sums will differ. The result will thus be a semimagic square and not a true magic square. Moving in directions other than north east can also result in magic squares.



Doubly even means that n is an even multiple of an even integer; or 4p (e.g. 4, 8, 12), where p is an integer.
Generic pattern All the numbers are written in order from left to right across each row in turn, starting from the top left hand corner. Numbers are then either retained in the same place or interchanged with their diametrically opposite numbers in a certain regular pattern. In the magic square of order four, the numbers in the four central squares and one square at each corner are retained in the same place and the others are interchanged with their diametrically opposite numbers.
A construction of a magic square of order 4 Go left to right through the square counting and filling in on the diagonals only. Then continue by going left to right from the top left of the table and fill in counting down from 16 to 1. As shown below.


An extension of the above example for Orders 8 and 12 First generate a pattern table, where a '1' indicates selecting from the square where the numbers are written in order 1 to n^{2} (lefttoright, toptobottom), and a '0' indicates selecting from the square where the numbers are written in reverse order n^{2} to 1. For M = 4, the pattern table is as shown below (third matrix from left). When we shade the unaltered cells (cells with '1'), we get a crisscross pattern.




Note that a) there are equal number of '1's and '0's in each row and column; b) each row and each column are "palindromic"; c) the left and righthalves are mirror images; and d) the top and bottomhalves are mirror images (c & d imply b). The pattern table can be denoted using hexadecimals as (9, 6, 6, 9) for simplicity (1nibble per row, 4 rows). The simplest method of generating the required pattern for higher ordered doubly even squares is to copy the generic pattern for the fourth order square in each fourbyfour subsquares.
For M = 8, possible choices for the pattern are (99, 66, 66, 99, 99, 66, 66, 99) or (A5, 5A, A5, 5A, 5A, A5, 5A, A5) (2nibbles per row, 8 rows).



For M = 12, the truth table (E07, E07, E07, 1F8, 1F8, 1F8, 1F8, 1F8, 1F8, E07, E07, E07) yields a magic square (3nibbles per row, 12 rows.) It is possible to count the number of choices one has based on the truth table, taking rotational symmetries into account.
Euler's method for constructing the magic square is similar to NarayanaDe la Hire's method. It consists of breaking the magic square into two preliminary squares, which when added gives the magic square. As a running example, we will consider a 3×3 magic square. We can uniquely label each number of the 3×3 square by a pair of numbers as


where every pair of Greek and Latin alphabets, e.g. ?a, are meant to be added together, i.e. ?a = ? + a. Here, (?, ?, ?) = (0, 3, 6) and (a, b, c) = (1, 2, 3). The numbers 0, 3, and 6 are referred to as the root numbers while the numbers 1, 2, and 3 are referred to as the primary numbers. An important general constraint to note here is that
Thus, the original square can now be split into two simpler squares:


The lettered squares are referred to as Greek square or Latin square if the they are filled with Greek or Latin letters, respectively. A magic square can be constructed by ensuring that the Greek and Latin squares are magic squares too, provided that the Greek and Latin alphabets are paired with each other only once. The converse of this statement is also often, but not always (e.g. bordered magic squares), true: A magic square can be decomposed into a Greek and a Latin square, which are themselves magic squares. Thus the method is useful for both synthesis as well as analysis of a magic square. Lastly, by examining the pattern in which the numbers are laid out in the finished square, it is often possible to come up with a faster algorithm to construct higher order squares that replicate the given pattern, without the necessity of creating the preliminary Greek and Latin squares.
During the construction of the 3×3 magic square, the Greek and Latin squares with just three unique terms are much easier to deal with than the original square with nine different terms. The row sum and the column sum of the Greek square will be the same, ? + ? + ?, if
This can be achieved by cyclic permutation of ?, ?, and ?. Satisfaction of these two conditions ensures that the resulting square is a semimagic square; and such Greek and Latin squares are said to be mutually orthogonal to each other. To construct a magic square, we should also ensure that the diagonals sum to magic constant.
For the odd square, since ?, ?, and ? are in arithmetic progression, their sum is equal to the product of the square's order and the middle term, i.e. ? + ? + ? = 3 ?. Thus, the diagonal sums will be equal if we have ?s in the main diagonal and ?, ?, ? in the skew diagonal. Similarly, for the Latin square. The resulting Greek and Latin squares and their combination will be as below. Note that the Latin square is just a rotation of the Greek square with the corresponding letters interchanged. Substituting the values of the Greek and Latin letters will give the 3×3 magic square.




For the odd squares, this method explains why the Siamese method (method of De la Loubere) and its variants work. This basic method can be used to construct odd ordered magic squares of higher orders. To summarise:
A peculiarity of the construction method given above for the odd magic squares is that the middle number (n^{2} + 1)/2 will always appear at the center cell of the magic square. Since there are (n  1)! ways to arrange the skew diagonal terms, we can obtain (n  1)! Greek squares this way; same with the Latin squares. Also, since each Greek square can be paired with (n  1)! Latin squares, and since for each of Greek square the middle term may be arbitrarily placed in the main diagonal or the skew diagonal (and correspondingly along the skew diagonal or the main diagonal for the Latin squares), we can construct a total of 2 × (n  1)! × (n  1)! magic squares using this method. For n = 3, 5, and 7, this will give 8, 1152, and 1,036,800 different magic squares, respectively. Dividing by 8 to neglect equivalent squares due to rotation and reflections, we obtain 1, 144, and 129,600 essentially different magic squares, respectively.
As another example, the construction of 5×5 magic square is given. Numbers are directly written in place of alphabets. The numbered squares are referred to as primary square or root square if they are filled with primary numbers or root numbers, respectively. The numbers are placed about the skew diagonal in the root square such that the middle column of the resulting root square has 0, 5, 10, 15, 20 (from bottom to top). The primary square is obtained by rotating the root square counterclockwise by 90 degrees, and replacing the numbers. The resulting square is an associative magic square, in which every pair of numbers symmetrically opposite to the center sum up to the same value, 26. For e.g., 16+10, 3+23, 6+20, etc. In the finished square, 1 is placed at center cell of bottom row, and successive numbers are placed via elongated knight's move (two cells right, two cells down). When a collision occurs, the break move is to move one cell up. Also note that all the odd numbers occur inside the central diamond formed by 1, 5, 25 and 21, while the even numbers are placed at the corners. We have recreated the so called lozenge method.





A variation of the above example, where the skew diagonal sequence is taken in different order, is given below. The resulting magic square is the famous Agrippa's Mars magic square. It is an associative magic square and is the same as that produced by Moschopoulos's method. Here the resulting square starts with 1 placed in the cell which is to the right of the centre cell, and proceeds as De la Loubere's method, with downwardsright move. When a collision occurs, the break move is to shift two cells to the right.




In the previous examples, for the Greek square, the second row can be obtained from the first row by circularly shifting it to the right by one cell. Similarly, the third row is a circularly shifted version of the second row by one cell to the right; and so on. Likewise, the rows of the Latin square is circularly shifted to the left by one cell. Note that the row shifts for the Greek and Latin squares are in mutually opposite direction. It is possible to circularly shift the rows by more than one cell to create the Greek and Latin square.
This essentially recreates the knight's move. Since there are n! permutations of the Greek letters by which we can create the first row of the Greek square, there are thus n! Greek squares that can be created by shifting the first row in one direction. Likewise, there are n! such Latin squares created by shifting the first row in the opposite direction. Since a Greek square can be combined with any Latin square with opposite row shifts, there are n! × n! such combinations. Lastly, since the Greek square can be created by shifting the rows either to the left or to the right, there are a total of 2 × n! × n! magic squares that can be formed by this method. For n = 5 and 7, since they are prime numbers, this method creates 28,800 and 50,803,200 pandiagonal magic squares. Dividing by 8 to neglect equivalent squares due to rotation and reflections, we obtain 3,600 and 6,350,400 equivalent squares. Further dividing by n^{2} to neglect equivalent panmagic squares due to cyclic shifting of rows or columns, we obtain 144 and 129,600 essentially different panmagic squares. The condition that the square's order not be divisible by 3 means that we cannot construct squares of orders 9, 15, 21, 27, and so on, by this method.
In the example below, the square has been constructed such that 1 is at the center cell. In the finished square, the numbers can be continuously enumerated by the knight's move (two cells up, one cell right). When collision occurs, the break move is to move one cell up, one cell left.The resulting square is a pandiagonal magic square. The central 3×3 square is also a magic square with constant 33. This square also has a further diabolical property that any five cells in quincunx pattern formed by any odd subsquare, including wrap around, sum to the magic constant, 65. For e.g., 13+7+1+20+24, 23+1+9+15+17, 13+21+10+19+2 etc. Also the four corners of any 5×5 square and the central cell, as well as the middle cells of each side together with the central cell, including wrap around, give the magic sum: 13+10+19+22+1 and 20+24+12+8+1. Lastly the four rhomboids that form elongated crosses also give the magic sum: 23+1+9+24+8, 15+1+17+20+12, 14+1+18+13+19, 7+1+25+22+10.



We can also combine the Greek and Latin squares constructed by different methods. In the example below, the primary square is made using knight's move. We have recreated the magic square obtained by De la Loubere's method.



We can also construct even ordered squares in this fashion. Since there is no middle term among the Greek and Latin alphabets for even ordered squares, in addition to the first two constraint, for the diagonal sums to yield the magic constant,
An example of a 4×4 square is given below, which is also a pandiagonal magic square. For the given diagonal and skew diagonal in the Greek square, the rest of the cells can be filled using the condition that each letter appear only once in a row and a column.





Euler's method has given rise to the study of GraecoLatin squares. Euler's method for constructing magic squares is valid for any order except 2 and 6.
NarayanaDe la Hire's method for odd square is the same as that of Euler's. However, for even squares, we drop the second requirement that each Greek and Latin letter appear only once in a given row or column. This allows us to take advantage of the fact that the sum of an arithmetic progression with an even number of terms is equal to the sum of two opposite symmetric terms multiplied by half the total number of terms. Thus, when constructing the Greek or Latin squares,
As a running example, if we take a 4×4 square, where the Greek and Latin terms have the values (?, ?, ?, ?) = (0, 4, 8, 12) and (a, b, c, d) = (1, 2, 3, 4), respectively, then we have ? + ? + ? + ? = 2 (? + ?) = 2 (? + ?). Similarly, a + b + c + d = 2 (a + d) = 2 (b + c). This means that the complementary pair ? and ? (or ? and ?) can appear twice in a column (or a row) and still give the desired magic sum. Thus, we can construct:
In the example given below, the main diagonal (from top left to bottom right) is filled with sequence ordered as ?, ?, ?, ?, while the skew diagonal (from bottom left to top right) filled in the same order. The remaining cells are then filled column wise such that the complementary letters appears only once within a row, but twice within a column. In the first column, since ? appears on the 1st and 4th row, the remaining cells are filled with its complementary term ?. Similarly, the empty cells in the 2nd column are filled with ?; in 3rd column ?; and 4th column ?. Each Greek letter appears only once along the rows, but twice along the columns. As such, the row sums are ? + ? + ? + ? while the column sums are either 2 (? + ?) or 2 (? + ?). Likewise for the Latin square, which is obtained by flipping the Greek square along the main diagonal and interchanging the corresponding letters.





The above example explains why the "crisscross" method for doubly even magic square works. Another possible 4×4 magic square, which is also pandiagonal as well as mostperfect, is constructed below using the same rule. However, the diagonal sequence is chosen such that all four letters ?, ?, ?, ? appear inside the central 2×2 subsquare. Remaining cells are filled column wise such that each letter appears only once within a row. In the 1st column, the empty cells need to be filled with one of the letters selected from the complementary pair ? and ?. Given the 1st column, the entry in the 2nd row can only be ? since ? is already there in the 2nd row; while, in the 3rd row the entry can only be ? since ? is already present in the 3rd row. We proceed similarly until all cells are filled. The Latin square given below has been obtained by flipping the Greek square along the main diagonal and replacing the Greek alphabets with corresponding Latin alphabets.





We can use this approach to construct singly even magic squares as well. However, we have to be more careful in this case since the criteria of pairing the Greek and Latin alphabets uniquely is not automatically satisfied. Violation of this condition leads to some missing numbers in the final square, while duplicating others. Thus, here is an important proviso:
Below is a construction of a 6×6 magic square, where the numbers are directly given, rather than the alphabets. The second square is constructed by flipping the first square along the main diagonal. Here in the first column of the root square the 3rd cell is paired with its complement in the 4th cells. Thus, in the primary square, the numbers in the 1st and 6th cell of the 3rd row are same. Likewise, with other columns and rows. In this example the flipped version of the root square satisfies this proviso.



As another example of a 6×6 magic square constructed this way is given below. Here the diagonal entries are arranged differently. The primary square is constructed by flipping the root square about the main diagonal. In the second square the proviso for singly even square is not satisfied, leading to a nonnormal magic square (third square) where the numbers 3, 13, 24, and 34 are duplicated while missing the numbers 4, 18, 19, and 33.



The last condition is a bit arbitrary and may not always need to be invoked, as in this example:



As one more example, we have generated an 8×8 magic square. Unlike the crisscross pattern of the earlier section for evenly even square, here we have a checkered pattern for the altered and unaltered cells. Also, in each quadrant the odd and even numbers appear in alternating columns.



In this method, the objective is to wrap a border around a smaller magic square which serves as a core. Let us consider the 3×3 square for example. Subtracting the middle number 5 from each number 1, 2, ..., 9, we obtain 0, ± 1, ± 2, ± 3, and ± 4, which we will refer to as bone numbers. The magic constant of a magic square, which we will refer to as the skeleton square, made by these bone numbers will be zero since adding all the rows of a magic square will give nM = ? k = 0; thus M = 0.
It is not difficult to argue that the middle number should be placed at the center cell: let x be the number placed in the middle cell, then the sum of the middle column, middle row, and the two diagonals give ? k + 3 x = 4 M. Since ? k = 3 M, we have x = M / 3. Here M = 0, so x = 0.
Putting the middle number 0 in the center cell, we want to construct a border such that the resulting square is magic. Let the border be given by:
u  a  v 
b*  0  b 
v*  a*  u* 
Since the sum of each row, column, and diagonals must be a constant (which is zero), we have
Thus, it must be that if we have chosen a, b, u, and v, then we have a* =  a, b* =  b, u* =  u, and v* =  v. But how should we choose a, b, u, and v? We have the sum of the top row and the sum of the right column as
Since 0 is an even number, there are only two ways that the sum of three integers will yield an even number: 1) if all three were even, or 2) if two were odd and one was even. Since in our choice of numbers we only have two even nonzero number (± 2 and ± 4), the first statement is false. Hence, it must be the case that the second statement is true: that two of the numbers are odd and one even.
The only way that both the above two equations can satisfy this parity condition simultaneously, and still be consistent with the set of numbers we have, is when u and v are odd. For on the contrary, if we had assumed u and a to be odd and v to be even in the first equation, then u* =  u will be odd in the second equation, making b odd as well, in order to satisfy the parity condition. But this requires three odd numbers (u, v, and b), contradicting the fact that we only have two odd numbers (± 1 and ± 3) which we can fit.
Thus, taking u = 1 and v = 3, we have a =  4 and b =  2. Hence, the finished skeleton square will be as in the left. Adding 5 to each number, we get the finished magic square.


Similar argument can be used to construct larger squares.
Bordering method for order 5: Let us consider the fifth order square. For this, we have a 3×3 magic core, around which we will wrap a magic border. The bone numbers to be used will be ± 5, ± 6, ± 7, ± 8, ± 9, ± 10, ± 11, and ± 12. Disregarding the signs, we have 8 bone numbers, 4 of which are even and 4 of which are odd. Let the magic border be given as
u  a  b  c  v 
d*  d  
e*  e  
f*  f  
v*  a*  b*  c*  u* 
As before, we should
It is sufficient to determine the numbers u, v, a, b, c, d, e, f to describe the magic border. As before, we have the two constraint equations for the top row and right column:
Multiple solutions are possible. The standard procedure is to
There are 28 ways of choosing two numbers from the set of 8 bone numbers for the corner cells u and v. However, not all pairs are admissible. Among the 28 pairs, 16 pairs are made of an even and an odd number, 6 pairs have both as even numbers, while 6 pairs have them both as odd numbers.
We can prove that the corner cells u and v cannot have an even and an odd number. This is because if this were so, then the sums u + v and v + u* will be odd, and since 0 is an even number, the sums a + b + c and d + e + f should be odd as well. The only way that the sum of three integers will result in an odd number is when 1) two of them are even and one is odd, or 2) when all three are odd. Since the corner cells are assumed to be odd and even, neither of these two statements are compatible with the fact that we only have 3 even and 3 odd bone numbers at our disposal. This proves that u and v cannot have different parity. This eliminates 16 possibilities.
Now consider the case when both u and v are even. The 6 possible pairs are: (6, 8), (6, 10), (6, 12), (8, 10), (8, 12), and (10, 12). Since the sums u + v and v + u* are even, the sums a + b + c and d + e + f should be even as well. The only way that the sum of three integers will result in an even number is when 1) two of them are odd and one is even, or 2) when all three are even. The fact that the two corner cells are even means that we have only 2 even numbers at our disposal. Thus, the second statement is not compatible with this fact. Hence, it must be the case that the first statement is true: two of the three numbers should be odd, while one be even. Let a, b, d, e be odd numbers while c and f be even numbers. Given the odd bone numbers at our disposal: ± 5, ± 7, ± 9, and ± 11, their differences range from D = { ± 2, ± 4, ± 6} while their sums range from S = {± 12, ± 14, ± 16, ± 18, ± 20}. It is also useful to have a table of their sum and differences for later reference. Now, given the corner cells (u, v), we can check its admissibility by checking if the sums u + v + c and v + u* + f fall within the set D or S. The admissibility of the corner numbers is a necessary but not a sufficient condition for the solution to exist.
For example, if we consider the pair (u, v) = (8, 12), then u + v = 20 and v + u* = 6; and we will have ± 6 and ± 10 even bone numbers at our disposal. Taking c = ± 6, we have the sum u + v + c to be 26 and 14, both of which do not fall within the sets D or S. Likewise, taking c = ± 10, we have the sum u + v + c to be 30 and 10, both of which again do not fall within the sets D or S. Thus, the pair (8, 12) is not admissible. By similar process of reasoning, we can also rule out the pair (6, 12).
As another example, if we consider the pair (u, v) = (10, 12), then u + v = 22 and v + u* = 2; and we will have ± 6 and ± 8 even bone numbers at our disposal. Taking c = ± 6, we have the sum u + v + c to be 28 and 16. While 28 does not fall within the sets D or S, 16 falls in set S. By inspection, we find that if (a, b) = (7, 9), then a + b = 16; and it will satisfy the first constraint equation. Also, taking f = ± 8, we have the sum v + u* + f to be 10 and 6. While 10 does not fall within the sets D or S, 6 falls in set D. Since 7 and 9 have already been assigned to a and b, clearly (d, e) = (5, 11) so that d + e = 6; and it will satisfy the second constraint equation.
Likewise, taking c = ± 8, we have the sum u + v + c to be 30 and 14. While 30 does not fall within the sets D or S, 14 falls in set S. By inspection, we find that if (a, b) = (5, 9), then a + b = 14. Also, taking f = ± 6, we have the sum v + u* + f to be 8 and 4. While 8 does not fall within the sets D or S, 4 falls in set D. Clearly, (d, e) = (7, 11) so that d + e = 4, and the second constraint equation will be satisfied.
Hence the corner pair (u, v) = (10, 12) is admissible; and it admits two solutions: (a, b, c, d, e, f) = (7, 9, 6, 5, 11, 8) and (a, b, c, d, e, f) = ( 5, 9, 8, 7, 11, 6). The finished skeleton squares are given below. The magic square is obtained by adding 13 to each cells.




Using similar process of reasoning, we can construct the following table for the values of u, v, a, b, c, d, e, f expressed as bone numbers as given below. There are only 6 possible choices for the corner cells, which leads to 10 possible border solutions.
u, v  a, b, c  d, e, f 

12, 10  6, 7, 9  11, 5, 8 
12, 10  5, 8, 9  11, 6, 7 
11, 5  6, 10, 12  9, 7, 8 
10, 6  5, 9, 12  11, 7, 8 
10, 6  7, 11, 12  9, 5, 8 
9, 7  5, 10, 11  12, 6, 8 
9, 7  6, 10, 12  11, 5, 8 
8, 6  7, 10, 11  12, 5, 9 
8, 6  9, 11, 12  10, 5, 7 
7, 5  9, 10, 11  12, 6, 8 
Given this group of 10 borders, we can construct 10×8×(3!)^{2} = 2880 essentially different magic squares. Here the bone numbers ± 5, ..., ± 12 were consecutive. More bordered squares can be constructed if the numbers are not consecutive.
This method is based on a 2006 published mathematical game called medjig (author: Willem Barink, editor: PhilosSpiele). The pieces of the medjig puzzle are squares divided in four quadrants on which the numbers 0, 1, 2 and 3 are dotted in all sequences. There are 18 squares, with each sequence occurring 3 times. The aim of the puzzle is to take 9 squares out of the collection and arrange them in a 3×3 "medjigsquare" in such a way that each row and column formed by the quadrants sums to 9, along with the two long diagonals.
The medjig method of constructing a magic square of order 6 is as follows:
Example:



Similarly, for any larger integer N, a magic square of order 2N can be constructed from any N × N medjigsquare with each row, column, and long diagonal summing to 3N, and any N × N magic square (using the four numbers from 1 to 4N^{2} that equal the original number modulo N^{2}).
There is a method reminiscent of the Kronecker product of two matrices, that builds an nm × nm magic square from an n × n magic square and an m × m magic square.^{[55]}
Similar to the Sudoku and KenKen puzzles, solving partially completed has become a popular mathematical puzzle. Puzzle solving centers on analyzing the initial given values and possible values of the empty squares. One or more solution arises as the participant uses logic and permutation group theory to rule out all unsuitable number combinations.
Certain extra restrictions can be imposed on magic squares.
If raising each number to the nth power yields another magic square, the result is a bimagic (n = 2), a trimagic (n = 3), or, in general, a multimagic square.
A magic square in which the number of letters in the name of each number in the square generates another magic square is called an alphamagic square.
There are magic squares consisting entirely of primes. Rudolf Ondrejka (19282001) discovered the following 3×3 magic square of primes, in this case nine Chen primes:
17  89  71 
113  59  5 
47  29  101 
The GreenTao theorem implies that there are arbitrarily large magic squares consisting of primes.
Sometimes the rules for magic squares are relaxed, so that only the rows and columns but not necessarily the diagonals sum to the magic constant (this is usually called a semimagic square).
In heterosquares and antimagic squares, the 2n + 2 sums must all be different.
Instead of adding the numbers in each row, column and diagonal, one can apply some other operation. For example, a multiplicative magic square has a constant product of numbers. A multiplicative magic square can be derived from an additive magic square by raising 2 (or any other integer) to the power of each element, because the logarithm of the product of 2 numbers is the sum of logarithm of each. Alternatively, if any 3 numbers in a line are 2^{a}, 2^{b} and 2^{c}, their product is 2^{a+b+c}, which is constant if a+b+c is constant, as they would be if a, b and c were taken from ordinary (additive) magic square.^{[56]} For example, the original LoShu magic square becomes:
16  512  4 
8  32  128 
256  2  64 
Other examples of multiplicative magic squares include:



Still using Ali Skalli's non iterative method, it is possible to produce an infinity of multiplicative magic squares of complex numbers^{[57]} belonging to set. On the example below, the real and imaginary parts are integer numbers, but they can also belong to the entire set of real numbers . The product is: 352,507,340,640  400,599,719,520 i.
21  +14i  −70  +30i  −93  −9i  −105  −217i  16  +50i  4  −14i  14  −8i 
63  −35i  28  +114i  −14i  2  +6i  3  −11i  211  +357i  −123  −87i  
31  −15i  13  −13i  −103  +69i  −261  −213i  49  −49i  −46  +2i  −6  +2i 
102  −84i  −28  −14i  43  +247i  −10  −2i  5  +9i  31  −27i  −77  +91i 
−22  −6i  7  +7i  8  +14i  50  +20i  −525  −492i  −28  −42i  −73  +17i 
54  +68i  138  −165i  −56  −98i  −63  +35i  4  −8i  2  −4i  70  −53i 
24  +22i  −46  −16i  6  −4i  17  +20i  110  +160i  84  −189i  42  −14i 
Additivemultiplicative magic squares and semimagic squares satisfy properties of both ordinary and multiplicative magic squares and semimagic squares, respectively.^{[58]}


It is unknown if any additivemultiplicative magic squares smaller than 8×8 exist, but it has been proven that no 3×3 or 4×4 additivemultiplicative magic squares and no 3×3 additivemultiplicative semimagic squares exist.^{[59]}
Magic squares may be constructed which contain geometric shapes instead of numbers. Such squares, known as geometric magic squares, were invented and named by Lee Sallows in 2001.^{[60]}
In the example shown the shapes appearing are two dimensional. It was Sallows discovery that all magic squares are geometric, the numbers that appear in numerical magic squares then being interpreted as a shorthand notation for indicating the lengths of straight line segments that are the geometric 'shapes' occurring in the square. That is, numerical magic squares are that special case of a geometric magic square using one dimensional shapes.^{[61]}
In 2017, following initial ideas of William Walkington and Inder Taneja, the first linear area magic square (LAMS) was constructed by Walter Trump.^{[62]}
Other shapes than squares can be considered. The general case is to consider a design with N parts to be magic if the N parts are labeled with the numbers 1 through N and a number of identical subdesigns give the same sum. Examples include magic dodecahedrons, magic triangles^{[63]}magic stars, and magic hexagons. Going up in dimension results in magic cubes and other magic hypercubes.
Edward Shineman has developed yet another design in the shape of magic diamonds.
Possible magic shapes are constrained by the number of equalsized, equalsum subsets of the chosen set of labels. For example, if one proposes to form a magic shape labeling the parts with {1, 2, 3, 4}, the subdesigns will have to be labeled with {1,4} and {2,3}.^{[63]}
Over the years, many mathematicians, including Euler, Cayley and Benjamin Franklin have worked on magic squares, and discovered fascinating relations.
In 1992, Demirörs, Rafraf, and Tanik published a method for converting some magic squares into nqueens solutions, and vice versa.^{[64]}
As mentioned above, the set of normal squares of order three constitutes a single equivalence classall equivalent to the Lo Shu square. Thus there is basically just one normal magic square of order 3. But the number of distinct normal magic squares rapidly increases for higher orders.^{[65]} There are 880 distinct magic squares of order 4 and 275,305,224 of order 5.^{[66]} These squares are respectively displayed on 255 magic tori of order 4, and 251,449,712 of order 5.^{[67]} The number of magic tori and distinct normal squares is not yet known for any higher order.^{[68]}
Algorithms tend to only generate magic squares of a certain type or classification, making counting all possible magic squares quite difficult. Traditional counting methods have proven unsuccessful, statistical analysis using the Monte Carlo method has been applied. The basic principle applied to magic squares is to randomly generate n × n matrices of elements 1 to n^{2} and check if the result is a magic square. The probability that a randomly generated matrix of numbers is a magic square is then used to approximate the number of magic squares.^{[69]}
More intricate versions of the Monte Carlo method, such as the exchange Monte Carlo, and Monte Carlo Backtracking have produced even more accurate estimations. Using these methods it has been shown that the probability of magic squares decreases rapidly as n increases. Using fitting functions give the curves seen to the right.
Magic squares of order 3 through 9, assigned to the seven planets, and described as means to attract the influence of planets and their angels (or demons) during magical practices, can be found in several manuscripts all around Europe starting at least since the 15th century. Among the best known, the Liber de Angelis, a magical handbook written around 1440, is included in Cambridge Univ. Lib. MS Dd.xi.45.^{[70]} The text of the Liber de Angelis is very close to that of De septem quadraturis planetarum seu quadrati magici, another handbook of planetary image magic contained in the Codex 793 of the Biblioteka Jagiello?ska (Ms BJ 793).^{[71]} The magical operations involve engraving the appropriate square on a plate made with the metal assigned to the corresponding planet,^{[72]} as well as performing a variety of rituals. For instance, the 3×3 square, that belongs to Saturn, has to be inscribed on a lead plate. It will, in particular, help women during a difficult childbirth.
In about 1510 Heinrich Cornelius Agrippa wrote De Occulta Philosophia, drawing on the Hermetic and magical works of Marsilio Ficino and Pico della Mirandola. In its 1531 edition, he expounded on the magical virtues of the seven magical squares of orders 3 to 9, each associated with one of the astrological planets, much in the same way as the older texts did. This book was very influential throughout Europe until the counterreformation, and Agrippa's magic squares, sometimes called kameas, continue to be used within modern ceremonial magic in much the same way as he first prescribed.^{[73]}



The most common use for these kameas is to provide a pattern upon which to construct the sigils of spirits, angels or demons; the letters of the entity's name are converted into numbers, and lines are traced through the pattern that these successive numbers make on the kamea. In a magical context, the term magic square is also applied to a variety of word squares or number squares found in magical grimoires, including some that do not follow any obvious pattern, and even those with differing numbers of rows and columns. They are generally intended for use as talismans. For instance the following squares are: The Sator square, one of the most famous magic squares found in a number of grimoires including the Key of Solomon; a square "to overcome envy", from The Book of Power;^{[74]} and two squares from The Book of the Sacred Magic of Abramelin the Mage, the first to cause the illusion of a superb palace to appear, and the second to be worn on the head of a child during an angelic invocation:




Moreover, it's a magic square, a pattern in which God supposedly instructed the early Hebrews to gain power from names or their numeric equivalents.
I love when they bring the nerdy FBI guy in to explain the concept of "the magic square," which he does by telling us that magic squares have been around for a while, and then nothing else. Unless I missed something, all I have at this point is that magic squares are squares that people once thought were magic.