In statistics, pooled variance (also known as combined, composite, or overall variance) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance.
Under the assumption of equal population variances, the pooled sample variance provides a higher precision estimate of variance than the individual sample variances. This higher precision can lead to increased statistical power when used in statistical tests that compare the populations, such as the t-test.
The square root of a pooled variance estimator is known as a pooled standard deviation (also known as combined, composite, or overall standard deviation).
In statistics, many times, data are collected for a dependent variable, y, over a range of values for the independent variable, x. For example, the observation of fuel consumption might be studied as a function of engine speed while the engine load is held constant. If, in order to achieve a small variance in y, numerous repeated tests are required at each value of x, the expense of testing may become prohibitive. Reasonable estimates of variance can be determined by using the principle of pooled variance after repeating each test at a particular x only a few times.
The pooled variance is an estimate of the fixed common variance underlying various populations that have different means.
If the populations are indexed , then the pooled variance can be computed by the weighted average
where is the sample size of population and the sample variances are
Use of weighting factors instead of comes from Bessel's correction.
The unbiased least squares estimate of
and the biased maximum likelihood estimate
are used in different contexts.^{[]} The former can give an unbiased to estimate when the two groups share an equal population variance. The latter one can give a more efficient to estimate biasedly. Note that the quantities in the right hand sides of both equations are the unbiased estimates.
Consider the following set of data for y obtained at various levels of the independent variable x.
x | y |
---|---|
1 | 31, 30, 29 |
2 | 42, 41, 40, 39 |
3 | 31, 28 |
4 | 23, 22, 21, 19, 18 |
5 | 21, 20, 19, 18,17 |
The number of trials, mean, variance and standard deviation are presented in the next table.
x | n | y_{mean} | s_{i}^{2} | s_{i} |
---|---|---|---|---|
1 | 3 | 30.0 | 1.0 | 1.0 |
2 | 4 | 40.5 | 1.67 | 1.29 |
3 | 2 | 29.5 | 4.5 | 2.12 |
4 | 5 | 20.6 | 4.3 | 2.07 |
5 | 5 | 19.0 | 2.5 | 1.58 |
These statistics represent the variance and standard deviation for each subset of data at the various levels of x. If we can assume that the same phenomena are generating random error at every level of x, the above data can be "pooled" to express a single estimate of variance and standard deviation. In a sense, this suggests finding a mean variance or standard deviation among the five results above. This mean variance is calculated by weighting the individual values with the size of the subset for each level of x. Thus, the pooled variance is defined by
where n_{1}, n_{2}, . . . n_{k} are the sizes of the data subsets at each level of the variable x, and s_{1}^{2}, s_{2}^{2}, . . ., s_{k}^{2} are their respective variances.
The pooled variance of the data shown above is therefore:
This section is empty. You can help by adding to it. (June 2017) |
Pooled variance is an estimate when there is a correlation between pooled data sets or the average of the data sets is not identical. Pooled variation is less precise the more non-zero the correlation or distant the averages between data sets.
The variation of data for non-overlapping data sets is:
Where the mean is defined as:
Given an biased maximum likelyhood defined as:
Then the error in the biased maximum likelyhood estimate is:
Assuming N is large such that:
Then the error in the estimate reduces to:
Or alternatively:
This section does not cite any sources. (June 2011) (Learn how and when to remove this template message) |
This article may need to be cleaned up. It has been merged from Standard deviation. |
Rather than estimating pooled standard deviation the following is the way to exactly aggregate standard deviation when more statistical information is available.
The populations of sets, which may overlap, can be calculated simply as follows:
The populations of sets, which do not overlap, can be calculated simply as follows:
Standard deviations of non-overlapping sub-populations can be aggregated as follows if the size (actual or relative to one another) and means of each are known:
For example, suppose it is known that the average American man has a mean height of 70 inches with a standard deviation of three inches and that the average American woman has a mean height of 65 inches with a standard deviation of two inches. Also assume that the number of men, N, is equal to the number of women. Then the mean and standard deviation of heights of American adults could be calculated as
For the more general case of M non-overlapping populations, X_{1} through X_{M}, and the aggregate population ,
where
If the size (actual or relative to one another), mean, and standard deviation of two overlapping populations are known for the populations as well as their intersection, then the standard deviation of the overall population can still be calculated as follows:
If two or more sets of data are being added together datapoint by datapoint, the standard deviation of the result can be calculated if the standard deviation of each data set and the covariance between each pair of data sets is known:
For the special case where no correlation exists between any pair of data sets, then the relation reduces to the root sum of squares:
Standard deviations of non-overlapping sub-samples can be aggregated as follows if the actual size and means of each are known:
For the more general case of M non-overlapping data sets, X_{1} through X_{M}, and the aggregate data set ,
where
If the size, mean, and standard deviation of two overlapping samples are known for the samples as well as their intersection, then the standard deviation of the aggregated sample can still be calculated. In general,