Timeline Of Heat Engine Technology

This Timeline of heat engine technology describes how heat engines have been known since antiquity but have been made into increasingly useful devices since the 17th century as a better understanding of the processes involved was gained. They continue to be developed today.

In engineering and thermodynamics, a heat engine performs the conversion of heat energy to mechanical work by exploiting the temperature gradient between a hot "source" and a cold "sink". Heat is transferred to the sink from the source, and in this process some of the heat is converted into work.

A heat pump is a heat engine run in reverse. Work is used to create a heat differential. The timeline includes devices classed as both engines and pumps, as well as identifying significant leaps in human understanding.

Pre Seventeenth century

  • Prehistory - The fire piston used by tribes in southeast Asia and the Pacific islands to kindle fire.
  • c. 450 BC - Archytas of Tarentum used a jet of steam to propel a toy wooden bird suspended on wire.[1]
  • c. 50 AD - Hero of Alexandria's Engine, also known as Aeolipile. Demonstrates rotary motion produced by the reaction from jets of steam.[2]
  • c. 10th century - China develops the earliest fire lances which were spear-like weapons combining a bamboo tube containing gunpowder and shrapnel like projectiles tied to a spear.
  • c 12th century - China, the earliest depiction of a gun showing a metal body and a tight-fitting projectile which maximises the conversion of the hot gases to forward motion.[3]
  • 1125 - Gerbert, a professor in the schools at Rheims designed and built an organ blown by air escaping from a vessel in which it was compressed by heated water.[4]
  • 1232 - First recorded use of a rocket. In a battle between the Chinese and the Mongols. ( see Timeline of rocket and missile technology for a view of rocket development through time.)
  • c. 1500 - Leonardo da Vinci builds the Architonnerre, a steam-powered cannon.[5]
  • 1543 - Blasco de Garay, a Spanish naval officer demonstrates a boat propelled without oars or sail that utilised the reaction from a jet issued from a large boiling kettle of water.[4]
  • 1551 - Taqi al-Din demonstrates a steam turbine, used to rotate a spit.[6]

Seventeenth century

Eighteenth century

Nineteenth century

Twentieth century

Twenty-first century

See also

References

Notes

  1. ^ Hellemans, Alexander; et al. (1991). ""The Timetables of Science: A Chronology of the Most Important People and Events in the History of Science"". New York: Touchstone/Simon & Schuster, Inc., 1991.
  2. ^ Hero (1851) [reprint of 1st century CE original], "Section 50 - The Steam Engine". Translated from the original Greek by Bennet Woodcroft (Professor of Machinery in University College London.
  3. ^ Needham, Joseph (1986), Science & Civilisation in China, V:7: The Gunpowder Epic, Cambridge University Press, ISBN 0-521-30358-3
  4. ^ a b Reid, Hugo (1838). The Steam-engine: Being a Popular Description of the Construction and Action of that Engine; with a Sketch of Its History, and of the Laws of Heat and Pneumatics . Edinburgh: William Tait. p. 74. 
  5. ^ Thurston, Robert Henry (1996). A History of the Growth of the Steam-Engine (reprint ed.). Elibron. p. 12. ISBN 1-4021-6205-7.
  6. ^ Hassan, Ahmad Y. "Taqi al-Din and the First Steam Turbine". History of Science and Technology in Islam. Archived from the original on February 18, 2008. Retrieved . 
  7. ^ Full title:Le Machine volume nuovo, et di molto artificio da fare effetti maravigliosi tanto Spiritali quanto di Animale Operatione, arichito di bellissime figure. Del Sig. Giovanni Branco, Cittadino Romano. In Roma, 1629
  8. ^ "The History of the Automobile - Gas Engines". About.com. 2009-09-11. Retrieved . 
  9. ^ The Griffin Engineering Company, of Bath, Somerset University Of Bath, 15 December 2004. Accessed May 2011
  10. ^ Shoichi Toyabe; Takahiro Sagawa; Masahito Ueda; Eiro Muneyuki; Masaki Sano (2010-09-29). "Information heat engine: converting information to energy by feedback control". Nature Physics. 6 (12): 988-992. arXiv:1009.5287. Bibcode2011NatPh...6..988T. doi:10.1038/nphys1821. We demonstrated that free energy is obtained by a feedback control using the information about the system; information is converted to free energy, as the first realization of Szilard-type Maxwell's demon.
  11. ^ Michigan State University: Wave Disk Engine U.S. Department of Energy, Advanced Research Projects Agency, March 2011

  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.


Timeline_of_heat_engine_technology



 

Top US Cities