Valleytronics
Get Valleytronics essential facts below. View Videos or join the Valleytronics discussion. Add Valleytronics to your Like2do.com topic list for future reference or share this resource on social media.
Valleytronics

Valleytronics is a portmanteau combining the terms valley and electronics. The term refers to the technology of control over the valley degree of freedom (a local maximum/minimum on the valence/conduction band) of certain semiconductors that present multiple valleys inside the first Brillouin zone--known as multivalley semiconductors.[1][2]

The term was coined in analogy to the blooming field of spintronics. While in spintronics the internal degree of freedom of spin is harnessed to store, manipulate and read out bits of information, the proposal for valleytronics is to perform similar tasks using the multiple extrema of the band structure, so that the information of 0s and 1s would be stored as different discrete values of the crystal momentum.

The term is often used as an umbrella term to other forms of quantum manipulation of valleys in semiconductors, including quantum computation with valley-based qubits,[3][4][5][6] valley blockade and other forms of quantum electronics. First experimental evidence of valley blockade predicted in Ref.[7] (which completes the set of Coulomb charge blockade and Pauli spin blockade) has been observed in a single atom doped silicon transistor.[8]

Several theoretical proposals and experiments were performed in a variety of systems, such as graphene,[9] few-layer phosphorene,[10] some transition metal dichalcogenide monolayers,[11]diamond,[12]bismuth,[13]silicon,[4][14][15]carbon nanotubes,[6]aluminium arsenide[16] and silicene.[17]

References

  1. ^ Behnia, Kamran (2012-07-01). "Polarized light boosts valleytronics". Nature Nanotechnology. 7 (8): 488-489. Bibcode:2012NatNa...7..488B. doi:10.1038/nnano.2012.117. ISSN 1748-3387. 
  2. ^ Nebel, Christoph E. (2013). "Electrons dance in diamond". Nature Materials. 12 (8): 690-691. Bibcode:2013NatMa..12..690N. doi:10.1038/nmat3724. ISSN 1476-1122. 
  3. ^ Gunawan, O.; Habib, B.; De Poortere, E. P.; Shayegan, M. (2006-10-30). "Quantized conductance in an AlAs two-dimensional electron system quantum point contact". Physical Review B. 74 (15): 155436. arXiv:cond-mat/0606272 Freely accessible. Bibcode:2006PhRvB..74o5436G. doi:10.1103/PhysRevB.74.155436. 
  4. ^ a b Culcer, Dimitrie (2012). "Valley-Based Noise-Resistant Quantum Computation Using Si Quantum Dots". Physical Review Letters. 108 (12). arXiv:1107.0003 Freely accessible. Bibcode:2012PhRvL.108l6804C. doi:10.1103/PhysRevLett.108.126804. 
  5. ^ "Universal quantum computing with spin and valley states". Niklas Rohling and Guido Burkard. New J. Phys. 14, 083008(2012).
  6. ^ a b "A valley-spin qubit in a carbon nanotube". E. A. Laird, F. Pei & L. P. Kouwenhoven. Nature Nanotechnology 8, 565-568 (2013).
  7. ^ Prati, Enrico (2011-10-01). "Valley Blockade Quantum Switching in Silicon Nanostructures". Journal of Nanoscience and Nanotechnology. 11 (10): 8522-8526. arXiv:1203.5368 Freely accessible. doi:10.1166/jnn.2011.4957. ISSN 1533-4880. 
  8. ^ Crippa A; et al. (2015). "Valley blockade and multielectron spin-valley Kondo effect in silicon". Physical Review B. 92: 035424. arXiv:1501.02665 Freely accessible. Bibcode:2015PhRvB..92c5424C. doi:10.1103/PhysRevB.92.035424. 
  9. ^ A. Rycerz; et al. (2007). "Valley filter and valley valve in graphene". Nature Physics. 3: 172 - 175. arXiv:cond-mat/0608533 Freely accessible. Bibcode:2007NatPh...3..172R. doi:10.1038/nphys547. 
  10. ^ Ang, Y.S.; Yang, S.A.; Zhang, C.; Ma, Z.S.; Ang, L.K. (2017). "Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate". Physical Review B. 96: 245410. Bibcode:2017PhRvB..96x5410A. doi:10.1103/PhysRevB.96.245410. 
  11. ^ "Valley polarization in MoS2 monolayers by optical pumping". Hualing Zeng, Junfeng Dai, Wang Yao, Di Xiao and Xiaodong Cui. Nature Nanotechnology 7, 490-493 (2012).
  12. ^ "Generation, transport and detection of valley-polarized electrons in diamond". Jan Isberg, Markus Gabrysch, Johan Hammersberg, Saman Majdi, Kiran Kumar Kovi and Daniel J. Twitchen. Nature Materials 12, 760-764 (2013). doi:10.1038/nmat3694
  13. ^ "Field-induced polarization of Dirac valleys in bismuth". Zengwei Zhu, Aurélie Collaudin, Benoît Fauqué, Woun Kang and Kamran Behnia. Nature Physics 8, 89-94 (2011).
  14. ^ Takashina, K. (2006). "Valley Polarization in Si(100) at Zero Magnetic Field". Physical Review Letters. 96 (23). arXiv:cond-mat/0604118 Freely accessible. Bibcode:2006PhRvL..96w6801T. doi:10.1103/PhysRevLett.96.236801. 
  15. ^ Yang, C. H.; Rossi, A.; Ruskov, R.; Lai, N. S.; Mohiyaddin, F. A.; Lee, S.; Tahan, C.; Klimeck, G.; Morello, A. (2013-06-27). "Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting". Nature Communications. 4. arXiv:1302.0983 Freely accessible. Bibcode:2013NatCo...4E2069Y. doi:10.1038/ncomms3069. ISSN 2041-1723. 
  16. ^ "AlAs two-dimensional electrons in an antidot lattice: Electron pinball with elliptical Fermi contours". O. Gunawan, E. P. De Poortere, and M. Shayegan. Phys. Rev. B 75, 081304(R)(2007).
  17. ^ "Spin valleytronics in silicene: Quantum spin Hall-quantum anomalous Hall insulators and single-valley semimetals". Motohiko Ezawa, Phys. Rev. B 87, 155415 (2013)

External links


  This article uses material from the Wikipedia page available here. It is released under the Creative Commons Attribution-Share-Alike License 3.0.

Valleytronics
 



 

Top US Cities

Like2do.com was developed using defaultLogic.com's knowledge management platform. It allows users to manage learning and research. Visit defaultLogic's other partner sites below:
PopFlock.com : Music Genres | Musicians | Musical Instruments | Music Industry
NCR Works : Retail Banking | Restaurant Industry | Retail Industry | Hospitality Industry